前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >漫画:Bitmap算法 整合版

漫画:Bitmap算法 整合版

作者头像
小灰
发布2022-07-05 14:50:07
4250
发布2022-07-05 14:50:07
举报
文章被收录于专栏:程序员小灰

两个月之前——

为满足用户标签的统计需求,小灰利用Mysql设计了如下的表结构,每一个维度的标签都对应着Mysql表的一列:

要想统计所有90后的程序员该怎么做呢?

用一条求交集的SQL语句即可:

Select count(distinct Name) as 用户数 from table whare age = '90后' and Occupation = '程序员' ;

要想统计所有使用苹果手机或者00后的用户总合该怎么做?

用一条求并集的SQL语句即可:

Select count(distinct Name) as 用户数 from table whare Phone = '苹果' or age = '00后' ;

两个月之后——

———————————————

1. 给定长度是10的bitmap,每一个bit位分别对应着从0到9的10个整型数。此时bitmap的所有位都是0。

2. 把整型数4存入bitmap,对应存储的位置就是下标为4的位置,将此bit置为1。

3. 把整型数2存入bitmap,对应存储的位置就是下标为2的位置,将此bit置为1。

4. 把整型数1存入bitmap,对应存储的位置就是下标为1的位置,将此bit置为1。

5. 把整型数3存入bitmap,对应存储的位置就是下标为3的位置,将此bit置为1。

要问此时bitmap里存储了哪些元素?显然是4,3,2,1,一目了然。

Bitmap不仅方便查询,还可以去除掉重复的整型数。

1. 建立用户名和用户ID的映射:

2. 让每一个标签存储包含此标签的所有用户ID,每一个标签都是一个独立的Bitmap。

3. 这样,实现用户的去重和查询统计,就变得一目了然:

1. 如何查找使用苹果手机的程序员用户?

2. 如何查找所有男性或者00后的用户?

一周之后......

我们以上一期的用户数据为例,用户基本信息如下。按照年龄标签,可以划分成90后、00后两个Bitmap:

用更加形象的表示,90后用户的Bitmap如下:

这时候可以直接求得90后的用户吗?直接进行非运算?

显然,非90后用户实际上只有1个,而不是图中得到的8个结果,所以不能直接进行非运算。

同样是刚才的例子,我们给定90后用户的Bitmap,再给定一个全量用户的Bitmap。最终要求出的是存在于全量用户,但又不存在于90后用户的部分。

如何求出呢?我们可以使用异或操作,即相同位为0,不同位为1。

25769803776L = 11000000000000000000000000000000000B

8589947086L = 1000000000000000000011000011001110B

1.解析Word0,得知当前RLW横跨的空Word数量为0,后面有连续3个普通Word。

2.计算出当前RLW后方连续普通Word的最大ID是 64 X (0 + 3) -1 = 191。

3. 由于 191 < 400003,所以新ID必然在下一个RLW(Word4)之后。

4.解析Word4,得知当前RLW横跨的空Word数量为6247,后面有连续1个普通Word。

5.计算出当前RLW(Word4)后方连续普通Word的最大ID是191 + (6247 + 1)X64 = 400063。

6.由于400003 < 400063,因此新ID 400003的正确位置就在当前RLW(Word4)的后方普通Word,也就是Word5当中。

最终插入结果如下:

官方说明如下:

代码语言:javascript
复制
* Though you can set the bits in any order (e.g., set(100), set(10), set(1),
* you will typically get better performance if you set the bits in increasing order (e.g., set(1), set(10), set(100)).
* 
* Setting a bit that is larger than any of the current set bit
* is a constant time operation. Setting a bit that is smaller than an 
* already set bit can require time proportional to the compressed
* size of the bitmap, as the bitmap may need to be rewritten.

几点说明:

1. 该项目最初的技术选型并非Mysql,而是内存数据库hana。本文为了便于理解,把最初的存储方案写成了Mysq数据库。

1.文中介绍的Bitmap优化方法在一定程度上做了简化,源码中的逻辑要复杂得多。比如对于插入数据400003的定位,和实际步骤是有出入的。

2.如果同学们有兴趣,可以亲自去阅读源码,甚至是尝试实现自己的Bitmap算法。虽然要花不少时间,但这确实是一种很好的学习方法。

代码语言:javascript
复制
EWAHCompressedBitmap对应的maven依赖如下:
代码语言:javascript
复制
<dependency>
  <groupId>com.googlecode.javaewah</groupId>
  <artifactId>JavaEWAH</artifactId>
  <version>1.1.0</version>
</dependency>

—————END—————

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-08-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 程序员小灰 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档