前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >torch.nn.Conv1d及一维卷积详解[通俗易懂]

torch.nn.Conv1d及一维卷积详解[通俗易懂]

作者头像
全栈程序员站长
发布2022-07-29 15:42:26
6.6K0
发布2022-07-29 15:42:26
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

近日在搞wavenet,期间遇到了一维卷积,在这里对一维卷积以及其pytorch中的API进行总结,方便下次使用

之前对二维卷积是比较熟悉的,在初次接触一维卷积的时候,我以为是一个一维的卷积核在一条线上做卷积,但是这种理解是错的,一维卷积不代表卷积核只有一维,也不代表被卷积的feature也是一维。一维的意思是说卷积的方向是一维的。

下边首先看一个简单的一维卷积的例子(batchsize是1,也只有一个kernel):

输入:

一个长度为35的序列,序列中的每个元素有256维特征,故输入可以看作(35,256) 卷积核: size = (k,) , (k = 2)

这幅图只说明了只有一个数据的情况,如果将数据打包成batch,可以用代码表示如下:

代码语言:javascript
复制
    from torch.autograd import Variable
    conv1 = nn.Conv1d(in_channels=256,out_channels = 100, kernel_size = 2)
    input = torch.randn(32, 35, 256)
    # batch_size x text_len x embedding_size -> batch_size x embedding_size x text_len
    input = input.permute(0, 2, 1)
    input = Variable(input)
    out = conv1(input)
    print(out.size())

输出:

代码语言:javascript
复制
torch.Size([32, 100, 34])

在分析这个结果之前先来看一下nn.Conv1d的官方文档

代码语言:javascript
复制
// 可以理解为特征的维度
in_channels – Number of channels in the input image 
//输出的通道数,可以理解为卷积核的数量
out_channels – Number of channels produced by the convolution
// 卷积核的大小,只需要指定卷积方向的大小(因为是一维的)
kernel_size – Size of the convolving kernel
stride – Stride of the convolution
padding – Zero-padding added to both sides of the input
dilation – Spacing between kernel elements
groups – Number of blocked connections from input channels to output channels
bias – If True, adds a learnable bias to the output

再来看输出:torch.Size([32, 100, 34])

输入数据第一维表示batchsize,后边两维和前边的例子一样,不同的是输出,长度变为了34(卷积核大小为2),由于有100个卷积核,故生成了100个feature map

可能还会有一个疑惑,就是感觉100和34位置反过来了,这是因为nn.Conv1d对输入数据的最后一维进行一维卷积,为了将卷积方向设置正确,我们需要将输入序列长度这一维放到最后,即使用permute函数,这样就可以实现一维卷积。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/129290.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年4月1,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档