首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >计算机视觉中常用的注意力机制

计算机视觉中常用的注意力机制

作者头像
为为为什么
发布2022-08-09 17:33:50
6580
发布2022-08-09 17:33:50
举报
文章被收录于专栏:又见苍岚又见苍岚

注意力机制(Attention)是深度学习中常用的tricks,可以在模型原有的基础上直接插入,进一步增强你模型的性能。本文记录常用 Attention 方法与 Pytorch 实现。

概述

注意力机制起初是作为自然语言处理中的工作Attention Is All You Need被大家所熟知,从而也引发了一系列的XX is All You Need的论文命题,SENET-Squeeze-and-Excitation Networks是注意力机制在计算机视觉中应用的早期工作之一,并获得了2017年imagenet, 同时也是最后一届Imagenet比赛的冠军,后面就又出现了各种各样的注意力机制,应用在计算机视觉的任务中。

论文 arxiv 镜像

如果大家遇到论文下载比较慢, 推荐使用中科院的 arxiv 镜像: http://xxx.itp.ac.cn, 国内网络能流畅访问 简单直接的方法是, 把要访问 arxiv 链接中的域名从 https://arxiv.org 换成 http://xxx.itp.ac.cn

比如: 从 https://arxiv.org/abs/1901.07249 改为 http://xxx.itp.ac.cn/abs/1901.07249

注意力

SeNet: Squeeze-and-Excitation Attention
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class SEAttention(nn.Module):

    def __init__(self, channel=512, reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    se = SEAttention(channel=512, reduction=8)
    output = se(input)
    print(output.shape)

CBAM: Convolutional Block Attention Module
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class ChannelAttention(nn.Module):
    def __init__(self, channel, reduction=16):
        super().__init__()
        self.maxpool = nn.AdaptiveMaxPool2d(1)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.se = nn.Sequential(
            nn.Conv2d(channel, channel // reduction, 1, bias=False),
            nn.ReLU(),
            nn.Conv2d(channel // reduction, channel, 1, bias=False)
        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        max_result = self.maxpool(x)
        avg_result = self.avgpool(x)
        max_out = self.se(max_result)
        avg_out = self.se(avg_result)
        output = self.sigmoid(max_out + avg_out)
        return output


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super().__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size // 2)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        max_result, _ = torch.max(x, dim=1, keepdim=True)
        avg_result = torch.mean(x, dim=1, keepdim=True)
        result = torch.cat([max_result, avg_result], 1)
        output = self.conv(result)
        output = self.sigmoid(output)
        return output


class CBAMBlock(nn.Module):

    def __init__(self, channel=512, reduction=16, kernel_size=49):
        super().__init__()
        self.ca = ChannelAttention(channel=channel, reduction=reduction)
        self.sa = SpatialAttention(kernel_size=kernel_size)

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        residual = x
        out = x * self.ca(x)
        out = out * self.sa(out)
        return out + residual


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    kernel_size = input.shape[2]
    cbam = CBAMBlock(channel=512, reduction=16, kernel_size=kernel_size)
    output = cbam(input)
    print(output.shape)

BAM: Bottleneck Attention Module
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.shape[0], -1)


class ChannelAttention(nn.Module):
    def __init__(self, channel, reduction=16, num_layers=3):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        gate_channels = [channel]
        gate_channels += [channel // reduction] * num_layers
        gate_channels += [channel]

        self.ca = nn.Sequential()
        self.ca.add_module('flatten', Flatten())
        for i in range(len(gate_channels) - 2):
            self.ca.add_module('fc%d' % i, nn.Linear(gate_channels[i], gate_channels[i + 1]))
            self.ca.add_module('bn%d' % i, nn.BatchNorm1d(gate_channels[i + 1]))
            self.ca.add_module('relu%d' % i, nn.ReLU())
        self.ca.add_module('last_fc', nn.Linear(gate_channels[-2], gate_channels[-1]))

    def forward(self, x):
        res = self.avgpool(x)
        res = self.ca(res)
        res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
        return res


class SpatialAttention(nn.Module):
    def __init__(self, channel, reduction=16, num_layers=3, dia_val=2):
        super().__init__()
        self.sa = nn.Sequential()
        self.sa.add_module('conv_reduce1',
                           nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=channel // reduction))
        self.sa.add_module('bn_reduce1', nn.BatchNorm2d(channel // reduction))
        self.sa.add_module('relu_reduce1', nn.ReLU())
        for i in range(num_layers):
            self.sa.add_module('conv_%d' % i, nn.Conv2d(kernel_size=3, in_channels=channel // reduction,
                                                        out_channels=channel // reduction, padding=1, dilation=dia_val))
            self.sa.add_module('bn_%d' % i, nn.BatchNorm2d(channel // reduction))
            self.sa.add_module('relu_%d' % i, nn.ReLU())
        self.sa.add_module('last_conv', nn.Conv2d(channel // reduction, 1, kernel_size=1))

    def forward(self, x):
        res = self.sa(x)
        res = res.expand_as(x)
        return res


class BAMBlock(nn.Module):

    def __init__(self, channel=512, reduction=16, dia_val=2):
        super().__init__()
        self.ca = ChannelAttention(channel=channel, reduction=reduction)
        self.sa = SpatialAttention(channel=channel, reduction=reduction, dia_val=dia_val)
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        sa_out = self.sa(x)
        ca_out = self.ca(x)
        weight = self.sigmoid(sa_out + ca_out)
        out = (1 + weight) * x
        return out


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    bam = BAMBlock(channel=512, reduction=16, dia_val=2)
    output = bam(input)
    print(output.shape)

ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init
from collections import OrderedDict


class ECAAttention(nn.Module):

    def __init__(self, kernel_size=3):
        super().__init__()
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2)
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        y = self.gap(x)  # bs,c,1,1
        y = y.squeeze(-1).permute(0, 2, 1)  # bs,1,c
        y = self.conv(y)  # bs,1,c
        y = self.sigmoid(y)  # bs,1,c
        y = y.permute(0, 2, 1).unsqueeze(-1)  # bs,c,1,1
        return x * y.expand_as(x)


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    eca = ECAAttention(kernel_size=3)
    output = eca(input)
    print(output.shape)

SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter


class ShuffleAttention(nn.Module):

    def __init__(self, channel=512, reduction=16, G=8):
        super().__init__()
        self.G = G
        self.channel = channel
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
        self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    @staticmethod
    def channel_shuffle(x, groups):
        b, c, h, w = x.shape
        x = x.reshape(b, groups, -1, h, w)
        x = x.permute(0, 2, 1, 3, 4)

        # flatten
        x = x.reshape(b, -1, h, w)

        return x

    def forward(self, x):
        b, c, h, w = x.size()
        # group into subfeatures
        x = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w

        # channel_split
        x_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w

        # channel attention
        x_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1
        x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1
        x_channel = x_0 * self.sigmoid(x_channel)

        # spatial attention
        x_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,w
        x_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,w
        x_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w

        # concatenate along channel axis
        out = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,w
        out = out.contiguous().view(b, -1, h, w)

        # channel shuffle
        out = self.channel_shuffle(out, 2)
        return out


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    se = ShuffleAttention(channel=512, G=8)
    output = se(input)
    print(output.shape)

Polarized Self-Attention: Towards High-quality Pixel-wise Regression
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class ParallelPolarizedSelfAttention(nn.Module):

    def __init__(self, channel=512):
        super().__init__()
        self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
        self.softmax_channel = nn.Softmax(1)
        self.softmax_spatial = nn.Softmax(-1)
        self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
        self.ln = nn.LayerNorm(channel)
        self.sigmoid = nn.Sigmoid()
        self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.agp = nn.AdaptiveAvgPool2d((1, 1))

    def forward(self, x):
        b, c, h, w = x.size()

        # Channel-only Self-Attention
        channel_wv = self.ch_wv(x)  # bs,c//2,h,w
        channel_wq = self.ch_wq(x)  # bs,1,h,w
        channel_wv = channel_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        channel_wq = channel_wq.reshape(b, -1, 1)  # bs,h*w,1
        channel_wq = self.softmax_channel(channel_wq)
        channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)  # bs,c//2,1,1
        channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
                                                                                                                 1).reshape(
            b, c, 1, 1)  # bs,c,1,1
        channel_out = channel_weight * x

        # Spatial-only Self-Attention
        spatial_wv = self.sp_wv(x)  # bs,c//2,h,w
        spatial_wq = self.sp_wq(x)  # bs,c//2,h,w
        spatial_wq = self.agp(spatial_wq)  # bs,c//2,1,1
        spatial_wv = spatial_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)  # bs,1,c//2
        spatial_wq = self.softmax_spatial(spatial_wq)
        spatial_wz = torch.matmul(spatial_wq, spatial_wv)  # bs,1,h*w
        spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))  # bs,1,h,w
        spatial_out = spatial_weight * x
        out = spatial_out + channel_out
        return out


class SequentialPolarizedSelfAttention(nn.Module):

    def __init__(self, channel=512):
        super().__init__()
        self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
        self.softmax_channel = nn.Softmax(1)
        self.softmax_spatial = nn.Softmax(-1)
        self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
        self.ln = nn.LayerNorm(channel)
        self.sigmoid = nn.Sigmoid()
        self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.agp = nn.AdaptiveAvgPool2d((1, 1))

    def forward(self, x):
        b, c, h, w = x.size()

        # Channel-only Self-Attention
        channel_wv = self.ch_wv(x)  # bs,c//2,h,w
        channel_wq = self.ch_wq(x)  # bs,1,h,w
        channel_wv = channel_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        channel_wq = channel_wq.reshape(b, -1, 1)  # bs,h*w,1
        channel_wq = self.softmax_channel(channel_wq)
        channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)  # bs,c//2,1,1
        channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
                                                                                                                 1).reshape(
            b, c, 1, 1)  # bs,c,1,1
        channel_out = channel_weight * x

        # Spatial-only Self-Attention
        spatial_wv = self.sp_wv(channel_out)  # bs,c//2,h,w
        spatial_wq = self.sp_wq(channel_out)  # bs,c//2,h,w
        spatial_wq = self.agp(spatial_wq)  # bs,c//2,1,1
        spatial_wv = spatial_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)  # bs,1,c//2
        spatial_wq = self.softmax_spatial(spatial_wq)
        spatial_wz = torch.matmul(spatial_wq, spatial_wv)  # bs,1,h*w
        spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))  # bs,1,h,w
        spatial_out = spatial_weight * channel_out
        return spatial_out


if __name__ == '__main__':
    input = torch.randn(1, 512, 7, 7)
    psa = SequentialPolarizedSelfAttention(channel=512)
    output = psa(input)
    print(output.shape)

Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class SpatialGroupEnhance(nn.Module):

    def __init__(self, groups):
        super().__init__()
        self.groups = groups
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
        self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
        self.sig = nn.Sigmoid()
        self.init_weights()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, h, w = x.shape
        x = x.view(b * self.groups, -1, h, w)  # bs*g,dim//g,h,w
        xn = x * self.avg_pool(x)  # bs*g,dim//g,h,w
        xn = xn.sum(dim=1, keepdim=True)  # bs*g,1,h,w
        t = xn.view(b * self.groups, -1)  # bs*g,h*w

        t = t - t.mean(dim=1, keepdim=True)  # bs*g,h*w
        std = t.std(dim=1, keepdim=True) + 1e-5
        t = t / std  # bs*g,h*w
        t = t.view(b, self.groups, h, w)  # bs,g,h*w

        t = t * self.weight + self.bias  # bs,g,h*w
        t = t.view(b * self.groups, 1, h, w)  # bs*g,1,h*w
        x = x * self.sig(t)
        x = x.view(b, c, h, w)

        return x


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    sge = SpatialGroupEnhance(groups=8)
    output = sge(input)
    print(output.shape)

Coordinate Attention for Efficient Mobile Network Design

主要应用在轻量级网络上,在resnet系列上效果不好。

  • Pytorch代码
import torch
import torch.nn as nn
import torch.nn.functional as F


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6


class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)


class CoordAtt(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CoordAtt, self).__init__()
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        identity = x

        n, c, h, w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y)

        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out

Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions

计算量特别大,效果一般

class GAM_Attention(nn.Module):
    def __init__(self, in_channels, out_channels, rate=4):
        super(GAM_Attention, self).__init__()

        self.channel_attention = nn.Sequential(
            nn.Linear(in_channels, int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(in_channels / rate), in_channels)
        )

        self.spatial_attention = nn.Sequential(
            nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),
            nn.BatchNorm2d(int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Conv2d(int(in_channels / rate), out_channels, kernel_size=7, padding=3),
            nn.BatchNorm2d(out_channels)
        )

    def forward(self, x):
        # print(x)
        b, c, h, w = x.shape
        x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
        x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
        x_channel_att = x_att_permute.permute(0, 3, 1, 2)

        x = x * x_channel_att

        x_spatial_att = self.spatial_attention(x).sigmoid()
        out = x * x_spatial_att
        # print(out)

        return out

更多注意力

双路注意力机制-DANET
位置注意力-CCNET

在上面的danet上改的,主要是解决计算量的问题, 通过十字交叉的结构来解决

参考资料

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2022年5月24日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概述
    • 论文 arxiv 镜像
    • 注意力
      • SeNet: Squeeze-and-Excitation Attention
        • CBAM: Convolutional Block Attention Module
          • BAM: Bottleneck Attention Module
            • ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
              • SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
                • Polarized Self-Attention: Towards High-quality Pixel-wise Regression
                  • Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks
                    • Coordinate Attention for Efficient Mobile Network Design
                      • Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions
                      • 更多注意力
                        • 双路注意力机制-DANET
                          • 位置注意力-CCNET
                          • 参考资料
                          相关产品与服务
                          云联网
                          云联网(Cloud Connect Network,CCN)提供全网互联服务,助力您实现各地域的云上、云下多点互联。云联网的智能调度、路由学习等特性,可帮助您构建极速、稳定、经济的全网互联,轻松满足在线教育、游戏加速、混合云等全网互联场景下的极速体验。
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档