前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【小白学习PyTorch教程】十三、迁移学习:微调Alexnet实现ant和bee图像分类

【小白学习PyTorch教程】十三、迁移学习:微调Alexnet实现ant和bee图像分类

作者头像
润森
发布2022-08-18 09:30:16
5630
发布2022-08-18 09:30:16
举报
文章被收录于专栏:毛利学Python毛利学Python

「@Author:Runsen」

上次微调了VGG19,这次微调Alexnet实现ant和bee图像分类。

多年来,CNN许多变体已经发展起来,从而产生了几种 CNN 架构。其中最常见的是:

  1. LeNet-5 (1998)
  2. AlexNet (2012)
  3. ZFNet (2013)
  4. GoogleNet / Inception(2014)
  5. VGGNet (2014)
  6. ResNet (2015)

这篇博客是 关于AlexNet 教程,AlexNet 也是之前受欢迎的 CNN 架构之一。

AlexNet

AlexNet主要由 Alex Krizhevsky 设计。它由 Ilya Sutskever 和 Krizhevsky 的博士生导师 Geoffrey Hinton 共同发表,是卷积神经网络或 CNN。

在参加 ImageNet 大规模视觉识别挑战赛后,AlexNet 一举成名。Alexnet在分类任务中实现了 84.6% 的前 5 名准确率,而排名第二的团队的前 5 名准确率为 73.8%。由于 2012 年的计算能力非常有限,Alex 在 2 个 GPU 上对其进行了训练。

2012 Imagenet 挑战赛的 Alexnet 架构。=

上图是2012 Imagenet 挑战赛的 Alexnet 架构

224x224x3

227x227x3

  1. AlexNet 架构由 5 个卷积层、3 个最大池化层、2 个归一化层、2 个全连接层和 1 个 softmax 层组成。
  2. 每个卷积层由卷积滤波器和非线性激活函数ReLU组成。
  3. 池化层用于执行最大池化。
  4. 由于全连接层的存在,输入大小是固定的。
  5. 输入大小之前在大多数被提及为 224x224x3,但由于一些填充,变成了 227x227x3
  6. AlexNet 总共有 6000 万个参数。

下面是Alexnet中的 227x227x3 模型参数

Size / Operation

Filter

Depth

Stride

Padding

Number of Parameters

Forward Computation

3* 227 * 227

Conv1 + Relu

11 * 11

96

4

(11 * 11 *3 + 1) * 96=34944

(11113 + 1) * 96 * 55 * 55=105705600

96 * 55 * 55

Max Pooling

3 * 3

2

96 * 27 * 27

Norm

Conv2 + Relu

5 * 5

256

1

2

(5 * 5 * 96 + 1) * 256=614656

(5 * 5 * 96 + 1) * 256 * 27 * 27=448084224

256 * 27 * 27

Max Pooling

3 * 3

2

256 * 13 * 13

Norm

Conv3 + Relu

3 * 3

384

1

1

(3 * 3 * 256 + 1) * 384=885120

(3 * 3 * 256 + 1) * 384 * 13 * 13=149585280

384 * 13 * 13

Conv4 + Relu

3 * 3

384

1

1

(3 * 3 * 384 + 1) * 384=1327488

(3 * 3 * 384 + 1) * 384 * 13 * 13=224345472

384 * 13 * 13

Conv5 + Relu

3 * 3

256

1

1

(3 * 3 * 384 + 1) * 256=884992

(3 * 3 * 384 + 1) * 256 * 13 * 13=149563648

256 * 13 * 13

Max Pooling

3 * 3

2

256 * 6 * 6

Dropout (rate 0.5)

FC6 + Relu

256 * 6 * 6 * 4096=37748736

256 * 6 * 6 * 4096=37748736

4096

Dropout (rate 0.5)

FC7 + Relu

4096 * 4096=16777216

4096 * 4096=16777216

4096

FC8 + Relu

4096 * 1000=4096000

4096 * 1000=4096000

1000 classes

Overall

62369152=62.3 million

1135906176=1.1 billion

Conv VS FC

Conv:3.7million (6%) , FC: 58.6 million (94% )

Conv: 1.08 billion (95%) , FC: 58.6 million (5%)

数据集介绍

本数据集中存在PyTorch相关入门的数据集ant和bee案例,每一个ant和bee

数据来源:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

「关于数据集和代码见文末」

  1. 读取数据

这里选择将数据reshape成224*224。

代码语言:javascript
复制
import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch import nn
from torchvision import datasets, transforms, models

device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")

#transforms
transform_train = transforms.Compose([transforms.Resize((224, 224)),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.RandomAffine(0, shear=10, scale=(0.8, 1.2)),
                                      transforms.ColorJitter(brightness=1, contrast=1, saturation=1),
                                      transforms.ToTensor(),
                                      transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                                    ])

transform = transforms.Compose([transforms.Resize((224, 224)),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                               ])
root_train = 'ants_and_bees/train'
root_val = 'ants_and_bees/val'

training_dataset = datasets.ImageFolder(root=root_train, transform=transform)
validation_dataset = datasets.ImageFolder(root=root_val, transform=transform)
training_loader = torch.utils.data.DataLoader(training_dataset, batch_size=20, shuffle=True)
validation_loader = torch.utils.data.DataLoader(validation_dataset, batch_size = 20, shuffle=False)
  1. 展示数据
代码语言:javascript
复制
dataiter = iter(training_loader)
images, labels = dataiter.next()
fig = plt.figure(figsize=(25,6))

def im_convert(tensor):
  image = tensor.cpu().clone().detach().numpy()
  image = image.transpose(1, 2, 0) #shape 32 x 32 x 1
  #de-normalisation - multiply by std and add mean
  image = image * np.array((0.5, 0.5, 0.5)) + np.array((0.5, 0.5, 0.5))
  image = image.clip(0, 1)
  return image

for idx in np.arange(20):
  ax = fig.add_subplot(2, 10, idx+1, xticks=[], yticks=[])
  plt.imshow(im_convert(images[idx]))
  #print(labels[idx].item())
  ax.set_title(classes[labels[idx].item()])
plt.show()
  1. 微调Alexnet
代码语言:javascript
复制
model = models.alexnet(pretrained=True)
print(model)

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

通过转移学习,我们将使用从卷积层中提取的特征 需要把最后一层的out_features=1000,改为out_features=2

因为我们的模型只对蚂蚁和蜜蜂进行分类,所以输出应该是2,而不是AlexNet的输出层中指定的1000。因此,我们改变了AlexNet中的classifier第6个元素的输出。

代码语言:javascript
复制
for param in model.features.parameters():
  `param.requires_grad = False                     

import torch.nn as nn

n_inputs = model.classifier[6].in_features      #4096
last_layer = nn.Linear(n_inputs, len(classes))
model.classifier[6] = last_layer
model.to(device)

print(model)

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=2, bias=True)
  )
)
  1. 训练和测试模型
代码语言:javascript
复制
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

epochs = 5
losses = []
accuracy = []
val_losses = []
val_accuracies = []

for e in range(epochs):
  running_loss = 0.0
  running_accuracy = 0.0
  val_loss = 0.0
  val_accuracy = 0.0

  for images, labels in training_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)   
    loss = criterion(outputs, labels)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    _, preds = torch.max(outputs, 1)
    running_accuracy += torch.sum(preds == labels.data)
    running_loss += loss.item() 

    #不必为验证集执行梯度
    with torch.no_grad():       
      for val_images, val_labels in validation_loader:
        val_images = val_images.to(device)
        val_labels = val_labels.to(device)
        val_outputs = model(val_images)
        val_loss = criterion(val_outputs, val_labels)

        _, val_preds = torch.max(val_outputs, 1)
        val_accuracy += torch.sum(val_preds == val_labels.data)
        val_loss += val_loss.item() 
    # metrics for training data
    epoch_loss = running_loss/len(training_loader.dataset)
    epoch_accuracy = running_accuracy.float()/len(training_loader.dataset)
    losses.append(epoch_loss)
    accuracy.append(epoch_accuracy)
    # metrics for validation data
    val_epoch_loss = val_loss/len(validation_loader.dataset)
    val_epoch_accuracy = val_accuracy.float()/len(validation_loader.dataset)
    val_losses.append(val_epoch_loss)
    val_accuracies.append(val_epoch_accuracy)
    #print the training and validation metrics
    print("epoch:", e+1)
    print('training loss: {:.6f}, acc {:.6f}'.format(epoch_loss, epoch_accuracy.item()))
    print('validation loss: {:.6f}, acc {:.6f}'.format(val_epoch_loss, val_epoch_accuracy.item()))
代码语言:javascript
复制
plt.plot(losses, label='training loss')
plt.plot(val_losses, label='validation loss')
plt.legend()
plt.show()
代码语言:javascript
复制
plt.plot(accuracy, label='training accuracy')
plt.plot(val_accuracies, label = 'validation accuracy')
plt.legend()
plt.show()
代码语言:javascript
复制
dataiter = iter(validation_loader)
images, labels = dataiter.next()
images = images.to(device)
labels = labels.to(device)
output = model(images)
_, preds = torch.max(output, 1)

fig = plt.figure(figsize=(25, 4))

for idx in np.arange(20):
  ax = fig.add_subplot(2, 10, idx+1, xticks=[], yticks=[])
  plt.imshow(im_convert(images[idx]))
  ax.set_title("{} ({})".format(str(classes[preds[idx].item()]), str(classes[labels[idx].item()])), color=("green" if preds[idx]==labels[idx] else "red"))

plt.show()

PyTorch中使用alexnet的官方文档:

  • https://pytorch.org/hub/pytorch_vision_alexnet/

代码和数据下载:

链接:https://pan.baidu.com/s/1KKcl4I97kIcv83HLZVoHDg 提取码:tun1

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-07-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小刘IT教程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • AlexNet
  • 数据集介绍
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档