前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Lenet神经网络解读及其代码实现

Lenet神经网络解读及其代码实现

作者头像
墨明棋妙27
发布2022-08-24 15:55:15
3540
发布2022-08-24 15:55:15
举报
文章被收录于专栏:1996

Letnet简介

  手写字体识别模型LeNet5诞生于1994年,是最早的卷积神经网络之一。LeNet5通过巧妙的设计,利用卷积、参数共享、池化等操作提取特征,避免了大量的计算成本,最后再使用全连接神经网络进行分类识别,这个网络也是最近大量神经网络架构的起点。虽然现在看来Lenet基本实际用处不大,而且架构现在基本也没人用了,但是可以作为神经网络架构的一个很好的入门基础。

Lenet神经网络架构图

  LeNet5由7层CNN(不包含输入层)组成,上图中输入的原始图像大小是32×32像素。下面分别介绍每一层的含义。

  • input: 在原始的架构中,神经网络的输入是一张 32*32的灰度图像,不过这里我们选用的dataset是cifar10,是RGB图像,也就是 (32*32*3),3表示通道是3通道,即RGB三颜色。
  • conv1: 第一层是一个卷积层啦,卷积核(kernel size)大小 5*5,步长(stride)为 1 ,不进行padding,所以刚才的输入图像,经过这层后会输出6张 28*28 的特征图(feature map)。
  • maxpooling2: 接下来是一个降采样层,用的是maxpooling哦,stride为 2 , kernel size为 2*2 ,恩,所以很明显subsampling之后,输出6张 14*14的feature map。
  • conv3: 第三层又是一个卷积层,kernel size和stride均与第一层相同,不过最后要输出16张feature map。
  • maxpooling4:第四层,恩,又是一个maxpooling。
  • fc5:对,第五层开始就是全连接(fully connected layer)层了,把第四层的feature map摊平,然后做最直白的举证运算,输入是120个结点。
  • fc6:输出是84个结点。
  • output:我们的dataset是cifar10,刚好也是10类哦,所以就是接一个softmax分成10类。

基于Keras的简单代码实现

代码语言:javascript
复制
import keras
import numpy as np
from keras import optimizers
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
from keras.callbacks import LearningRateScheduler, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
 
batch_size    = 128
epochs        = 200
iterations    = 391
num_classes   = 10
weight_decay  = 0.0001
mean          = [125.307, 122.95, 113.865]
std           = [62.9932, 62.0887, 66.7048]
 
def build_model():
    model = Sequential()
    model.add(Conv2D(6, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay), input_shape=(32,32,3)))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    model.add(Conv2D(16, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay)))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    model.add(Flatten())
    model.add(Dense(120, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) ))
    model.add(Dense(84, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) ))
    model.add(Dense(10, activation = 'softmax', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) ))
    sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
    return model
 
def scheduler(epoch):
    if epoch < 100:
        return 0.01
    if epoch < 150:
        return 0.005
    return 0.001
 
if __name__ == '__main__':
 
    # load data
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    
    # data preprocessing  [raw - mean / std]
    for i in range(3):
        x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) / std[i]
        x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) / std[i]
 
    # build network
    model = build_model()
    print(model.summary())
 
    # set callback
    tb_cb = TensorBoard(log_dir='./lenet_dp_da_wd', histogram_freq=0)
    change_lr = LearningRateScheduler(scheduler)
    cbks = [change_lr,tb_cb]
 
    # using real-time data augmentation
    print('Using real-time data augmentation.')
    datagen = ImageDataGenerator(horizontal_flip=True,
            width_shift_range=0.125,height_shift_range=0.125,fill_mode='constant',cval=0.)
 
    datagen.fit(x_train)
 
    # start train 
    model.fit_generator(datagen.flow(x_train, y_train,batch_size=batch_size),
                        steps_per_epoch=iterations,
                        epochs=epochs,
                        callbacks=cbks,
                        validation_data=(x_test, y_test))
    # save model
    model.save('lenet_dp_da_wd.h5')
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-01-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉CV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Letnet简介
  • Lenet神经网络架构图
  • 基于Keras的简单代码实现
相关产品与服务
AI 应用产品
文字识别(Optical Character Recognition,OCR)基于腾讯优图实验室的深度学习技术,将图片上的文字内容,智能识别成为可编辑的文本。OCR 支持身份证、名片等卡证类和票据类的印刷体识别,也支持运单等手写体识别,支持提供定制化服务,可以有效地代替人工录入信息。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档