伟林,中年码农,从事过电信、手机、安全、芯片等行业,目前依旧从事Linux方向开发工作,个人爱好Linux相关知识分享,个人微博CSDN pwl999,欢迎大家关注!
workqueue是内核里面很重要的一个机制,特别是内核驱动,一般的小型任务(work)都不会自己起一个线程来处理,而是扔到workqueu中处理。workqueue的主要工作就是用进程上下文来处理内核中大量的小任务。
所以workqueue的主要设计思想:一个是并行,多个work不要相互阻塞;另外一个是节省资源,多个work尽量共享资源(进程、调度、内存),不要造成系统过多的资源浪费。
为了实现的设计思想,workqueue的设计实现也更新了很多版本。最新的workqueue实现叫做CMWQ(Concurrency Managed Workqueue),也就是用更加智能的算法来实现“并行和节省”。新版本的workque创建函数改成alloc_workqueue(),旧版本的函数create_*workqueue()逐渐会被被废弃。
本文的代码分析基于linux kernel 3.18.22,最好的学习方法还是"read the fucking source code"
关于workqueue中几个概念都是work相关的数据结构非常容易混淆,大概可以这样来理解:
最终的目的还是把work(工作)传递给worker(工人)去执行,中间的数据结构和各种关系目的是把这件事组织的更加清晰高效。
每个执行work的线程叫做worker,一组worker的集合叫做worker_pool。CMWQ的精髓就在worker_pool里面worker的动态增减管理上manage_workers()。
CMWQ对worker_pool分成两类:
默认work是在normal worker_pool中处理的。系统的规划是每个cpu创建两个normal worker_pool:一个normal优先级(nice=0)、一个高优先级(nice=HIGHPRI_NICE_LEVEL),对应创建出来的worker的进程nice不一样。
每个worker对应一个worker_thread()内核线程,一个worker_pool包含一个或者多个worker,worker_pool中worker的数量是根据worker_pool中work的负载来动态增减的。
我们可以通过“ps|grep kworker”命令来查看所有worker对应的内核线程,normal worker_pool对应内核线程(worker_thread())的命名规则是这样的:
snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
pool->attrs->nice < 0 ? "H" : "");
worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
"kworker/%s", id_buf);
so类似名字是normal worker_pool:
shell@PRO5:/ $ ps | grep "kworker"
root 14 2 0 0 worker_thr 0000000000 S kworker/1:0H // cpu1 高优先级worker_pool的第0个worker进程
root 17 2 0 0 worker_thr 0000000000 S kworker/2:0 // cpu2 低优先级worker_pool的第0个worker进程
root 18 2 0 0 worker_thr 0000000000 S kworker/2:0H // cpu2 高优先级worker_pool的第0个worker进程
root 23699 2 0 0 worker_thr 0000000000 S kworker/0:1 // cpu0 低优先级worker_pool的第1个worker进程
对应的拓扑图如下:
以下是normal worker_pool详细的创建过程代码分析:
static int __init init_workqueues(void)
{
int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
int i, cpu;
// (1)给每个cpu创建对应的worker_pool
/* initialize CPU pools */
for_each_possible_cpu(cpu) {
struct worker_pool *pool;
i = 0;
for_each_cpu_worker_pool(pool, cpu) {
BUG_ON(init_worker_pool(pool));
// 指定cpu
pool->cpu = cpu;
cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
// 指定进程优先级nice
pool->attrs->nice = std_nice[i++];
pool->node = cpu_to_node(cpu);
/* alloc pool ID */
mutex_lock(&wq_pool_mutex);
BUG_ON(worker_pool_assign_id(pool));
mutex_unlock(&wq_pool_mutex);
}
}
// (2)给每个worker_pool创建第一个worker
/* create the initial worker */
for_each_online_cpu(cpu) {
struct worker_pool *pool;
for_each_cpu_worker_pool(pool, cpu) {
pool->flags &= ~POOL_DISASSOCIATED;
BUG_ON(!create_worker(pool));
}
}
}
| →
static int init_worker_pool(struct worker_pool *pool)
{
spin_lock_init(&pool->lock);
pool->id = -1;
pool->cpu = -1;
pool->node = NUMA_NO_NODE;
pool->flags |= POOL_DISASSOCIATED;
// (1.1) worker_pool的work list,各个workqueue把work挂载到这个链表上,
// 让worker_pool对应的多个worker来执行
INIT_LIST_HEAD(&pool->worklist);
// (1.2) worker_pool的idle worker list,
// worker没有活干时,不会马上销毁,先进入idle状态备选
INIT_LIST_HEAD(&pool->idle_list);
// (1.3) worker_pool的busy worker list,
// worker正在干活,在执行work
hash_init(pool->busy_hash);
// (1.4) 检查idle状态worker是否需要destroy的timer
init_timer_deferrable(&pool->idle_timer);
pool->idle_timer.function = idle_worker_timeout;
pool->idle_timer.data = (unsigned long)pool;
// (1.5) 在worker_pool创建新的worker时,检查是否超时的timer
setup_timer(&pool->mayday_timer, pool_mayday_timeout,
(unsigned long)pool);
mutex_init(&pool->manager_arb);
mutex_init(&pool->attach_mutex);
INIT_LIST_HEAD(&pool->workers);
ida_init(&pool->worker_ida);
INIT_HLIST_NODE(&pool->hash_node);
pool->refcnt = 1;
/* shouldn't fail above this point */
pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
if (!pool->attrs)
return -ENOMEM;
return 0;
}
| →
static struct worker *create_worker(struct worker_pool *pool)
{
struct worker *worker = NULL;
int id = -1;
char id_buf[16];
/* ID is needed to determine kthread name */
id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
if (id < 0)
goto fail;
worker = alloc_worker(pool->node);
if (!worker)
goto fail;
worker->pool = pool;
worker->id = id;
if (pool->cpu >= 0)
// (2.1) 给normal worker_pool的worker构造进程名
snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
pool->attrs->nice < 0 ? "H" : "");
else
// (2.2) 给unbound worker_pool的worker构造进程名
snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
// (2.3) 创建worker对应的内核进程
worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
"kworker/%s", id_buf);
if (IS_ERR(worker->task))
goto fail;
// (2.4) 设置内核进程对应的优先级nice
set_user_nice(worker->task, pool->attrs->nice);
/* prevent userland from meddling with cpumask of workqueue workers */
worker->task->flags |= PF_NO_SETAFFINITY;
// (2.5) 将worker和worker_pool绑定
/* successful, attach the worker to the pool */
worker_attach_to_pool(worker, pool);
// (2.6) 将worker初始状态设置成idle,
// wake_up_process以后,worker自动leave idle状态
/* start the newly created worker */
spin_lock_irq(&pool->lock);
worker->pool->nr_workers++;
worker_enter_idle(worker);
wake_up_process(worker->task);
spin_unlock_irq(&pool->lock);
return worker;
fail:
if (id >= 0)
ida_simple_remove(&pool->worker_ida, id);
kfree(worker);
return NULL;
}
|| →
static void worker_attach_to_pool(struct worker *worker,
struct worker_pool *pool)
{
mutex_lock(&pool->attach_mutex);
// (2.5.1) 将worker线程和cpu绑定
/*
* set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
* online CPUs. It'll be re-applied when any of the CPUs come up.
*/
set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
/*
* The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
* stable across this function. See the comments above the
* flag definition for details.
*/
if (pool->flags & POOL_DISASSOCIATED)
worker->flags |= WORKER_UNBOUND;
// (2.5.2) 将worker加入worker_pool链表
list_add_tail(&worker->node, &pool->workers);
mutex_unlock(&pool->attach_mutex);
}
大部分的work都是通过normal worker_pool来执行的(例如通过schedule_work()、schedule_work_on()压入到系统workqueue(system_wq)中的work),最后都是通过normal worker_pool中的worker来执行的。这些worker是和某个cpu绑定的,work一旦被worker开始执行,都是一直运行到某个cpu上的不会切换cpu。
unbound worker_pool相对应的意思,就是worker可以在多个cpu上调度的。但是他其实也是绑定的,只不过它绑定的单位不是cpu而是node。所谓的node是对NUMA(Non Uniform Memory Access Architecture)系统来说的,NUMA可能存在多个node,每个node可能包含一个或者多个cpu。
unbound worker_pool对应内核线程(worker_thread())的命名规则是这样的:
snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
"kworker/%s", id_buf);
so类似名字是unbound worker_pool:
shell@PRO5:/ $ ps | grep "kworker"
root 23906 2 0 0 worker_thr 0000000000 S kworker/u20:2 // unbound pool 20的第2个worker进程
root 24564 2 0 0 worker_thr 0000000000 S kworker/u20:0 // unbound pool 20的第0个worker进程
root 24622 2 0 0 worker_thr 0000000000 S kworker/u21:1 // unbound pool 21的第1个worker进程
unbound worker_pool也分成两类:
对应的拓扑图如下:
对应的拓扑图如下:
以下是unbound worker_pool详细的创建过程代码分析:
static int __init init_workqueues(void)
{
// (1) 初始化normal和high nice对应的unbound attrs
/* create default unbound and ordered wq attrs */
for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
struct workqueue_attrs *attrs;
// (2) unbound_std_wq_attrs
BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
attrs->nice = std_nice[i];
unbound_std_wq_attrs[i] = attrs;
/*
* An ordered wq should have only one pwq as ordering is
* guaranteed by max_active which is enforced by pwqs.
* Turn off NUMA so that dfl_pwq is used for all nodes.
*/
// (3) ordered_wq_attrs,no_numa = true;
BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
attrs->nice = std_nice[i];
attrs->no_numa = true;
ordered_wq_attrs[i] = attrs;
}
}
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
unsigned int flags,
int max_active,
struct lock_class_key *key,
const char *lock_name, ...)
{
size_t tbl_size = 0;
va_list args;
struct workqueue_struct *wq;
struct pool_workqueue *pwq;
/* see the comment above the definition of WQ_POWER_EFFICIENT */
if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
flags |= WQ_UNBOUND;
/* allocate wq and format name */
if (flags & WQ_UNBOUND)
tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
// (1) 分配workqueue_struct数据结构
wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
if (!wq)
return NULL;
if (flags & WQ_UNBOUND) {
wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
if (!wq->unbound_attrs)
goto err_free_wq;
}
va_start(args, lock_name);
vsnprintf(wq->name, sizeof(wq->name), fmt, args);
va_end(args);
// (2) pwq最多放到worker_pool中的work数
max_active = max_active ?: WQ_DFL_ACTIVE;
max_active = wq_clamp_max_active(max_active, flags, wq->name);
/* init wq */
wq->flags = flags;
wq->saved_max_active = max_active;
mutex_init(&wq->mutex);
atomic_set(&wq->nr_pwqs_to_flush, 0);
INIT_LIST_HEAD(&wq->pwqs);
INIT_LIST_HEAD(&wq->flusher_queue);
INIT_LIST_HEAD(&wq->flusher_overflow);
INIT_LIST_HEAD(&wq->maydays);
lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
INIT_LIST_HEAD(&wq->list);
// (3) 给workqueue分配对应的pool_workqueue
// pool_workqueue将workqueue和worker_pool链接起来
if (alloc_and_link_pwqs(wq) < 0)
goto err_free_wq;
// (4) 如果是WQ_MEM_RECLAIM类型的workqueue
// 创建对应的rescuer_thread()内核进程
/*
* Workqueues which may be used during memory reclaim should
* have a rescuer to guarantee forward progress.
*/
if (flags & WQ_MEM_RECLAIM) {
struct worker *rescuer;
rescuer = alloc_worker(NUMA_NO_NODE);
if (!rescuer)
goto err_destroy;
rescuer->rescue_wq = wq;
rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
wq->name);
if (IS_ERR(rescuer->task)) {
kfree(rescuer);
goto err_destroy;
}
wq->rescuer = rescuer;
rescuer->task->flags |= PF_NO_SETAFFINITY;
wake_up_process(rescuer->task);
}
// (5) 如果是需要,创建workqueue对应的sysfs文件
if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
goto err_destroy;
/*
* wq_pool_mutex protects global freeze state and workqueues list.
* Grab it, adjust max_active and add the new @wq to workqueues
* list.
*/
mutex_lock(&wq_pool_mutex);
mutex_lock(&wq->mutex);
for_each_pwq(pwq, wq)
pwq_adjust_max_active(pwq);
mutex_unlock(&wq->mutex);
// (6) 将新的workqueue加入到全局链表workqueues中
list_add(&wq->list, &workqueues);
mutex_unlock(&wq_pool_mutex);
return wq;
err_free_wq:
free_workqueue_attrs(wq->unbound_attrs);
kfree(wq);
return NULL;
err_destroy:
destroy_workqueue(wq);
return NULL;
}
| →
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
{
bool highpri = wq->flags & WQ_HIGHPRI;
int cpu, ret;
// (3.1) normal workqueue
// pool_workqueue链接workqueue和worker_pool的过程
if (!(wq->flags & WQ_UNBOUND)) {
// 给workqueue的每个cpu分配对应的pool_workqueue,赋值给wq->cpu_pwqs
wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
if (!wq->cpu_pwqs)
return -ENOMEM;
for_each_possible_cpu(cpu) {
struct pool_workqueue *pwq =
per_cpu_ptr(wq->cpu_pwqs, cpu);
struct worker_pool *cpu_pools =
per_cpu(cpu_worker_pools, cpu);
// 将初始化时已经创建好的normal worker_pool,赋值给pool_workqueue
init_pwq(pwq, wq, &cpu_pools[highpri]);
mutex_lock(&wq->mutex);
// 将pool_workqueue和workqueue链接起来
link_pwq(pwq);
mutex_unlock(&wq->mutex);
}
return 0;
} else if (wq->flags & __WQ_ORDERED) {
// (3.2) unbound ordered_wq workqueue
// pool_workqueue链接workqueue和worker_pool的过程
ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
/* there should only be single pwq for ordering guarantee */
WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
"ordering guarantee broken for workqueue %s\n", wq->name);
return ret;
} else {
// (3.3) unbound unbound_std_wq workqueue
// pool_workqueue链接workqueue和worker_pool的过程
return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
}
}
|| →
int apply_workqueue_attrs(struct workqueue_struct *wq,
const struct workqueue_attrs *attrs)
{
// (3.2.1) 根据的ubound的ordered_wq_attrs/unbound_std_wq_attrs
// 创建对应的pool_workqueue和worker_pool
// 其中worker_pool不是默认创建好的,是需要动态创建的,对应的worker内核进程也要重新创建
// 创建好的pool_workqueue赋值给pwq_tbl[node]
/*
* If something goes wrong during CPU up/down, we'll fall back to
* the default pwq covering whole @att- kernel/workqueue.c:
- __alloc_workqueue_key() -> alloc_and_link_pwqs() -> apply_workqueue_attrs() -> alloc_unbound_pwq()/numa_pwq_tbl_install()rs->cpumask. Always create
* it even if we don't use it immediately.
*/
dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
if (!dfl_pwq)
goto enomem_pwq;
for_each_node(node) {
if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
if (!pwq_tbl[node])
goto enomem_pwq;
} else {
dfl_pwq->refcnt++;
pwq_tbl[node] = dfl_pwq;
}
}
/* save the previous pwq and install the new one */
// (3.2.2) 将临时pwq_tbl[node]赋值给wq->numa_pwq_tbl[node]
for_each_node(node)
pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
}
||| →
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
const struct workqueue_attrs *attrs)
{
struct worker_pool *pool;
struct pool_workqueue *pwq;
lockdep_assert_held(&wq_pool_mutex);
// (3.2.1.1) 如果对应attrs已经创建多对应的unbound_pool,则使用已有的unbound_pool
// 否则根据attrs创建新的unbound_pool
pool = get_unbound_pool(attrs);
if (!pool)
return NULL;
pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
if (!pwq) {
put_unbound_pool(pool);
return NULL;
}
init_pwq(pwq, wq, pool);
return pwq;
}
每个worker对应一个worker_thread()内核线程,一个worker_pool对应一个或者多个worker。多个worker从同一个链表中worker_pool->worklist获取work进行处理。
所以这其中有几个重点:
处理work的过程主要在worker_thread() -> process_one_work()中处理,我们具体看看代码的实现过程。
static int worker_thread(void *__worker)
{
struct worker *worker = __worker;
struct worker_pool *pool = worker->pool;
/* tell the scheduler that this is a workqueue worker */
worker->task->flags |= PF_WQ_WORKER;
woke_up:
spin_lock_irq(&pool->lock);
// (1) 是否die
/* am I supposed to die? */
if (unlikely(worker->flags & WORKER_DIE)) {
spin_unlock_irq(&pool->lock);
WARN_ON_ONCE(!list_empty(&worker->entry));
worker->task->flags &= ~PF_WQ_WORKER;
set_task_comm(worker->task, "kworker/dying");
ida_simple_remove(&pool->worker_ida, worker->id);
worker_detach_from_pool(worker, pool);
kfree(worker);
return 0;
}
// (2) 脱离idle状态
// 被唤醒之前worker都是idle状态
worker_leave_idle(worker);
recheck:
// (3) 如果需要本worker继续执行则继续,否则进入idle状态
// need more worker的条件: (pool->worklist != 0) && (pool->nr_running == 0)
// worklist上有work需要执行,并且现在没有处于running的work
/* no more worker necessary? */
if (!need_more_worker(pool))
goto sleep;
// (4) 如果(pool->nr_idle == 0),则启动创建更多的worker
// 说明idle队列中已经没有备用worker了,先创建 一些worker备用
/* do we need to manage? */
if (unlikely(!may_start_working(pool)) && manage_workers(worker))
goto recheck;
/*
* ->scheduled list can only be filled while a worker is
* preparing to process a work or actually processing it.
* Make sure nobody diddled with it while I was sleeping.
*/
WARN_ON_ONCE(!list_empty(&worker->scheduled));
/*
* Finish PREP stage. We're guaranteed to have at least one idle
* worker or that someone else has already assumed the manager
* role. This is where @worker starts participating in concurrency
* management if applicable and concurrency management is restored
* after being rebound. See rebind_workers() for details.
*/
worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
do {
// (5) 如果pool->worklist不为空,从其中取出一个work进行处理
struct work_struct *work =
list_first_entry(&pool->worklist,
struct work_struct, entry);
if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
/* optimization path, not strictly necessary */
// (6) 执行正常的work
process_one_work(worker, work);
if (unlikely(!list_empty(&worker->scheduled)))
process_scheduled_works(worker);
} else {
// (7) 执行系统特意scheduled给某个worker的work
// 普通的work是放在池子的公共list中的pool->worklist
// 只有一些特殊的work被特意派送给某个worker的worker->scheduled
// 包括:1、执行flush_work时插入的barrier work;
// 2、collision时从其他worker推送到本worker的work
move_linked_works(work, &worker->scheduled, NULL);
process_scheduled_works(worker);
}
// (8) worker keep_working的条件:
// pool->worklist不为空 && (pool->nr_running <= 1)
} while (keep_working(pool));
worker_set_flags(worker, WORKER_PREP);supposed
sleep:
// (9) worker进入idle状态
/*
* pool->lock is held and there's no work to process and no need to
* manage, sleep. Workers are woken up only while holding
* pool->lock or from local cpu, so setting the current state
* before releasing pool->lock is enough to prevent losing any
* event.
*/
worker_enter_idle(worker);
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irq(&pool->lock);
schedule();
goto woke_up;
}
| →
static void process_one_work(struct worker *worker, struct work_struct *work)
__releases(&pool->lock)
__acquires(&pool->lock)
{
struct pool_workqueue *pwq = get_work_pwq(work);
struct worker_pool *pool = worker->pool;
bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
int work_color;
struct worker *collision;
#ifdef CONFIG_LOCKDEP
/*
* It is permissible to free the struct work_struct from
* inside the function that is called from it, this we need to
* take into account for lockdep too. To avoid bogus "held
* lock freed" warnings as well as problems when looking into
* work->lockdep_map, make a copy and use that here.
*/
struct lockdep_map lockdep_map;
lockdep_copy_map(&lockdep_map, &work->lockdep_map);
#endif
/* ensure we're on the correct CPU */
WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
raw_smp_processor_id() != pool->cpu);
// (8.1) 如果work已经在worker_pool的其他worker上执行,
// 将work放入对应worker的scheduled队列中延后执行
/*
* A single work shouldn't be executed concurrently by
* multiple workers on a single cpu. Check whether anyone is
* already processing the work. If so, defer the work to the
* currently executing one.
*/
collision = find_worker_executing_work(pool, work);
if (unlikely(collision)) {
move_linked_works(work, &collision->scheduled, NULL);
return;
}
// (8.2) 将worker加入busy队列pool->busy_hash
/* claim and dequeue */
debug_work_deactivate(work);
hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
worker->current_work = work;
worker->current_func = work->func;
worker->current_pwq = pwq;
work_color = get_work_color(work);
list_del_init(&work->entry);
// (8.3) 如果work所在的wq是cpu密集型的WQ_CPU_INTENSIVE
// 则当前work的执行脱离worker_pool的动态调度,成为一个独立的线程
/*
* CPU intensive works don't participate in concurrency management.
* They're the scheduler's responsibility. This takes @worker out
* of concurrency management and the next code block will chain
* execution of the pending work items.
*/
if (unlikely(cpu_intensive))
worker_set_flags(worker, WORKER_CPU_INTENSIVE);
// (8.4) 在UNBOUND或者CPU_INTENSIVE work中判断是否需要唤醒idle worker
// 普通work不会执行这个操作
/*
* Wake up another worker if necessary. The condition is always
* false for normal per-cpu workers since nr_running would always
* be >= 1 at this point. This is used to chain execution of the
* pending work items for WORKER_NOT_RUNNING workers such as the
* UNBOUND and CPU_INTENSIVE ones.
*/
if (need_more_worker(pool))
wake_up_worker(pool);
/*
* Record the last pool and clear PENDING which should be the last
* update to @work. Also, do this inside @pool->lock so that
* PENDING and queued state changes happen together while IRQ is
* disabled.
*/
set_work_pool_and_clear_pending(work, pool->id);
spin_unlock_irq(&pool->lock);
lock_map_acquire_read(&pwq->wq->lockdep_map);
lock_map_acquire(&lockdep_map);
trace_workqueue_execute_start(work);
// (8.5) 执行work函数
worker->current_func(work);
/*
* While we must be careful to not use "work" after this, the trace
* point will only record its address.
*/
trace_workqueue_execute_end(work);
lock_map_release(&lockdep_map);
lock_map_release(&pwq->wq->lockdep_map);
if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
" last function: %pf\n",
current->comm, preempt_count(), task_pid_nr(current),
worker->current_func);
debug_show_held_locks(current);
dump_stack();
}
/*
* The following prevents a kworker from hogging CPU on !PREEMPT
* kernels, where a requeueing work item waiting for something to
* happen could deadlock with stop_machine as such work item could
* indefinitely requeue itself while all other CPUs are trapped in
* stop_machine. At the same time, report a quiescent RCU state so
* the same condition doesn't freeze RCU.
*/
cond_resched_rcu_qs();
spin_lock_irq(&pool->lock);
/* clear cpu intensive status */
if (unlikely(cpu_intensive))
worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
/* we're done with it, release */
hash_del(&worker->hentry);
worker->current_work = NULL;
worker->current_func = NULL;
worker->current_pwq = NULL;
worker->desc_valid = false;
pwq_dec_nr_in_flight(pwq, work_color);
}
worker_pool怎么来动态增减worker,这部分的算法是CMWQ的核心。其思想如下:
详细代码可以参考上节worker_thread() -> process_one_work()的分析。
为了追踪worker的running和suspend状态,用来动态调整worker的数量。wq使用在进程调度中加钩子函数的技巧:
void wq_worker_waking_up(struct task_struct *task, int cpu)
{
struct worker *worker = kthread_data(task);
if (!(worker->flags & WORKER_NOT_RUNNING)) {
WARN_ON_ONCE(worker->pool->cpu != cpu);
// 增加worker_pool中running的worker数量
atomic_inc(&worker->pool->nr_running);
}
}
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
{
struct worker *worker = kthread_data(task), *to_wakeup = NULL;
struct worker_pool *pool;
/*
* Rescuers, which may not have all the fields set up like normal
* workers, also reach here, let's not access anything before
* checking NOT_RUNNING.
*/
if (worker->flags & WORKER_NOT_RUNNING)
return NULL;
pool = worker->pool;
/* this can only happen on the local cpu */
if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
return NULL;
/*
* The counterpart of the following dec_and_test, implied mb,
* worklist not empty test sequence is in insert_work().
* Please read comment there.
*
* NOT_RUNNING is clear. This means that we're bound to and
* running on the local cpu w/ rq lock held and preemption
* disabled, which in turn means that none else could be
* manipulating idle_list, so dereferencing idle_list without pool
* lock is safe.
*/
// 减少worker_pool中running的worker数量
// 如果worklist还有work需要处理,唤醒第一个idle worker进行处理
if (atomic_dec_and_test(&pool->nr_running) &&
!list_empty(&pool->worklist))
to_wakeup = first_idle_worker(pool);
return to_wakeup ? to_wakeup->task : NULL;
}
这里worker_pool的调度思想是:如果有work需要处理,保持一个running状态的worker处理,不多也不少。
但是这里有一个问题如果work是cpu密集型的,它虽然也没有进入suspend状态,但是会长时间的占用cpu,让后续的work阻塞太长时间。
为了解决这个问题,CMWQ设计了WQ_CPU_INTENSIVE,如果一个wq声明自己是CPU_INTENSIVE,则让当前worker脱离动态调度,像是进入了suspend状态,那么CMWQ会创建新的worker,后续的work会得到执行。
static void process_one_work(struct worker *worker, struct work_struct *work)
__releases(&pool->lock)
__acquires(&pool->lock)
{
bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
// (1) 设置当前worker的WORKER_CPU_INTENSIVE标志
// nr_running会被减1
// 对worker_pool来说,当前worker相当于进入了suspend状态
/*
* CPU intensive works don't participate in concurrency management.
* They're the scheduler's responsibility. This takes @worker out
* of concurrency management and the next code block will chain
* execution of the pending work items.
*/
if (unlikely(cpu_intensive))
worker_set_flags(worker, WORKER_CPU_INTENSIVE);
// (2) 接上一步,判断是否需要唤醒新的worker来处理work
/*
* Wake up another worker if necessary. The condition is always
* false for normal per-cpu workers since nr_running would always
* be >= 1 at this point. This is used to chain execution of the
* pending work items for WORKER_NOT_RUNNING workers such as the
* UNBOUND and CPU_INTENSIVE ones.
*/
if (need_more_worker(pool))
wake_up_worker(pool);
// (3) 执行work
worker->current_func(work);
// (4) 执行完,清理当前worker的WORKER_CPU_INTENSIVE标志
// 当前worker重新进入running状态
/* clear cpu intensive status */
if (unlikely(cpu_intensive))
worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
}
WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
WORKER_UNBOUND | WORKER_REBOUND,
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
{
struct worker_pool *pool = worker->pool;
WARN_ON_ONCE(worker->task != current);
/* If transitioning into NOT_RUNNING, adjust nr_running. */
if ((flags & WORKER_NOT_RUNNING) &&
!(worker->flags & WORKER_NOT_RUNNING)) {
atomic_dec(&pool->nr_running);
}
worker->flags |= flags;
}
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
struct worker_pool *pool = worker->pool;
unsigned int oflags = worker->flags;
WARN_ON_ONCE(worker->task != current);
worker->flags &= ~flags;
/*
* If transitioning out of NOT_RUNNING, increment nr_running. Note
* that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
* of multiple flags, not a single flag.
*/
if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
if (!(worker->flags & WORKER_NOT_RUNNING))
atomic_inc(&pool->nr_running);
}
从上几节可以看到,系统会创建和cpu绑定的normal worker_pool和不绑定cpu的unbound worker_pool,worker_pool又会动态的创建worker。
那么在cpu hotplug的时候,会怎么样动态的处理worker_pool和worker呢?来看具体的代码分析:
static int __init init_workqueues(void)
{
cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
}
| →
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
int cpu = (unsigned long)hcpu;
struct work_struct unbind_work;
struct workqueue_struct *wq;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DOWN_PREPARE:
/* unbinding per-cpu workers should happen on the local CPU */
INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
// (1) cpu down_prepare
// 把和当前cpu绑定的normal worker_pool上的worker停工
// 随着当前cpu被down掉,这些worker会迁移到其他cpu上
queue_work_on(cpu, system_highpri_wq, &unbind_work);
// (2) unbound wq对cpu变化的更新
/* update NUMA affinity of unbound workqueues */
mutex_lock(&wq_pool_mutex);
list_for_each_entry(wq, &workqueues, list)
wq_update_unbound_numa(wq, cpu, false);
mutex_unlock(&wq_pool_mutex);
/* wait for per-cpu unbinding to finish */
flush_work(&unbind_work);
destroy_work_on_stack(&unbind_work);
break;
}
return NOTIFY_OK;
}
| →
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
int cpu = (unsigned long)hcpu;
struct worker_pool *pool;
struct workqueue_struct *wq;
int pi;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
for_each_cpu_worker_pool(pool, cpu) {
if (pool->nr_workers)
continue;
if (!create_worker(pool))
return NOTIFY_BAD;
}
break;
case CPU_DOWN_FAILED:
case CPU_ONLINE:
mutex_lock(&wq_pool_mutex);
// (3) cpu up
for_each_pool(pool, pi) {
mutex_lock(&pool->attach_mutex);
// 如果和当前cpu绑定的normal worker_pool上,有WORKER_UNBOUND停工的worker
// 重新绑定worker到worker_pool
// 让这些worker开工,并绑定到当前cpu
if (pool->cpu == cpu)
rebind_workers(pool);
else if (pool->cpu < 0)
restore_unbound_workers_cpumask(pool, cpu);
mutex_unlock(&pool->attach_mutex);
}
/* update NUMA affinity of unbound workqueues */
list_for_each_entry(wq, &workqueues, list)
wq_update_unbound_numa(wq, cpu, true);
mutex_unlock(&wq_pool_mutex);
break;
}
return NOTIFY_OK;
}
workqueue就是存放一组work的集合,基本可以分为两类:一类系统创建的workqueue,一类是用户自己创建的workqueue。
不论是系统还是用户workqueue,如果没有指定WQ_UNBOUND,默认都是和normal worker_pool绑定。
系统在初始化时创建了一批默认的workqueue:system_wq、system_highpri_wq、system_long_wq、system_unbound_wq、system_freezable_wq、system_power_efficient_wq、system_freezable_power_efficient_wq。
像system_wq,就是schedule_work()默认使用的。
static int __init init_workqueues(void)
{
system_wq = alloc_workqueue("events", 0, 0);
system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
system_long_wq = alloc_workqueue("events_long", 0, 0);
system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
WQ_UNBOUND_MAX_ACTIVE);
system_freezable_wq = alloc_workqueue("events_freezable",
WQ_FREEZABLE, 0);
system_power_efficient_wq = alloc_workqueue("events_power_efficient",
WQ_POWER_EFFICIENT, 0);
system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
WQ_FREEZABLE | WQ_POWER_EFFICIENT,
0);
}
详细过程见上几节的代码分析:alloc_workqueue() -> __alloc_workqueue_key() -> alloc_and_link_pwqs()。
这一部分的逻辑,wq->work_color、wq->flush_color换来换去的逻辑实在看的头晕。看不懂暂时不想看,放着以后看吧,或者有谁看懂了教我一下。:)
pool_workqueue只是一个中介角色。
详细过程见上几节的代码分析:alloc_workqueue() -> __alloc_workqueue_key() -> alloc_and_link_pwqs()。
描述一份待执行的工作。
将work压入到workqueue当中。
static void __queue_work(int cpu, struct workqueue_struct *wq,
struct work_struct *work)
{
struct pool_workqueue *pwq;
struct worker_pool *last_pool;
struct list_head *worklist;
unsigned int work_flags;
unsigned int req_cpu = cpu;
/*
* While a work item is PENDING && off queue, a task trying to
* steal the PENDING will busy-loop waiting for it to either get
* queued or lose PENDING. Grabbing PENDING and queueing should
* happen with IRQ disabled.
*/
WARN_ON_ONCE(!irqs_disabled());
debug_work_activate(work);
/* if draining, only works from the same workqueue are allowed */
if (unlikely(wq->flags & __WQ_DRAINING) &&
WARN_ON_ONCE(!is_chained_work(wq)))
return;
retry:
// (1) 如果没有指定cpu,则使用当前cpu
if (req_cpu == WORK_CPU_UNBOUND)
cpu = raw_smp_processor_id();
/* pwq which will be used unless @work is executing elsewhere */
if (!(wq->flags & WQ_UNBOUND))
// (2) 对于normal wq,使用当前cpu对应的normal worker_pool
pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
else
// (3) 对于unbound wq,使用当前cpu对应node的worker_pool
pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
// (4) 如果work在其他worker上正在被执行,把work压到对应的worker上去
// 避免work出现重入的问题
/*
* If @work was previously on a different pool, it might still be
* running there, in which case the work needs to be queued on that
* pool to guarantee non-reentrancy.
*/
last_pool = get_work_pool(work);
if (last_pool && last_pool != pwq->pool) {
struct worker *worker;
spin_lock(&last_pool->lock);
worker = find_worker_executing_work(last_pool, work);
if (worker && worker->current_pwq->wq == wq) {
pwq = worker->current_pwq;
} else {
/* meh... not running there, queue here */
spin_unlock(&last_pool->lock);
spin_lock(&pwq->pool->lock);
}
} else {
spin_lock(&pwq->pool->lock);
}
/*
* pwq is determined and locked. For unbound pools, we could have
* raced with pwq release and it could already be dead. If its
* refcnt is zero, repeat pwq selection. Note that pwqs never die
* without another pwq replacing it in the numa_pwq_tbl or while
* work items are executing on it, so the retrying is guaranteed to
* make forward-progress.
*/
if (unlikely(!pwq->refcnt)) {
if (wq->flags & WQ_UNBOUND) {
spin_unlock(&pwq->pool->lock);
cpu_relax();
goto retry;
}
/* oops */
WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
wq->name, cpu);
}
/* pwq determined, queue */
trace_workqueue_queue_work(req_cpu, pwq, work);
if (WARN_ON(!list_empty(&work->entry))) {
spin_unlock(&pwq->pool->lock);
return;
}
pwq->nr_in_flight[pwq->work_color]++;
work_flags = work_color_to_flags(pwq->work_color);
// (5) 如果还没有达到max_active,将work挂载到pool->worklist
if (likely(pwq->nr_active < pwq->max_active)) {
trace_workqueue_activate_work(work);
pwq->nr_active++;
worklist = &pwq->pool->worklist;
// 否则,将work挂载到临时队列pwq->delayed_works
} else {
work_flags |= WORK_STRUCT_DELAYED;
worklist = &pwq->delayed_works;
}
// (6) 将work压入worklist当中
insert_work(pwq, work, worklist, work_flags);
spin_unlock(&pwq->pool->lock);
}
flush某个work,确保work执行完成。
怎么判断异步的work已经执行完成?这里面使用了一个技巧:在目标work的后面插入一个新的work wq_barrier,如果wq_barrier执行完成,那么目标work肯定已经执行完成。
/**
* flush_work - wait for a work to finish executing the last queueing instance
* @work: the work to flush
*
* Wait until @work has finished execution. @work is guaranteed to be idle
* on return if it hasn't been requeued since flush started.
*
* Return:
* %true if flush_work() waited for the work to finish execution,
* %false if it was already idle.
*/
bool flush_work(struct work_struct *work)
{
struct wq_barrier barr;
lock_map_acquire(&work->lockdep_map);
lock_map_release(&work->lockdep_map);
if (start_flush_work(work, &barr)) {
// 等待barr work执行完成的信号
wait_for_completion(&barr.done);
destroy_work_on_stack(&barr.work);
return true;
} else {
return false;
}
}
| →
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
{
struct worker *worker = NULL;
struct worker_pool *pool;
struct pool_workqueue *pwq;
might_sleep();
// (1) 如果work所在worker_pool为NULL,说明work已经执行完
local_irq_disable();
pool = get_work_pool(work);
if (!pool) {
local_irq_enable();
return false;
}
spin_lock(&pool->lock);
/* see the comment in try_to_grab_pending() with the same code */
pwq = get_work_pwq(work);
if (pwq) {
// (2) 如果work所在pwq指向的worker_pool不等于上一步得到的worker_pool,说明work已经执行完
if (unlikely(pwq->pool != pool))
goto already_gone;
} else {
// (3) 如果work所在pwq为NULL,并且也没有在当前执行的work中,说明work已经执行完
worker = find_worker_executing_work(pool, work);
if (!worker)
goto already_gone;
pwq = worker->current_pwq;
}
// (4) 如果work没有执行完,向work的后面插入barr work
insert_wq_barrier(pwq, barr, work, worker);
spin_unlock_irq(&pool->lock);
/*
* If @max_active is 1 or rescuer is in use, flushing another work
* item on the same workqueue may lead to deadlock. Make sure the
* flusher is not running on the same workqueue by verifying write
* access.
*/
if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
lock_map_acquire(&pwq->wq->lockdep_map);
else
lock_map_acquire_read(&pwq->wq->lockdep_map);
lock_map_release(&pwq->wq->lockdep_map);
return true;
already_gone:
spin_unlock_irq(&pool->lock);
return false;
}
|| →
static void insert_wq_barrier(struct pool_workqueue *pwq,
struct wq_barrier *barr,
struct work_struct *target, struct worker *worker)
{
struct list_head *head;
unsigned int linked = 0;
/*
* debugobject calls are safe here even with pool->lock locked
* as we know for sure that this will not trigger any of the
* checks and call back into the fixup functions where we
* might deadlock.
*/
// (4.1) barr work的执行函数wq_barrier_func()
INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
init_completion(&barr->done);
/*
* If @target is currently being executed, schedule the
* barrier to the worker; otherwise, put it after @target.
*/
// (4.2) 如果work当前在worker中执行,则barr work插入scheduled队列
if (worker)
head = worker->scheduled.next;
// 否则,则barr work插入正常的worklist队列中,插入位置在目标work后面
// 并且置上WORK_STRUCT_LINKED标志
else {
unsigned long *bits = work_data_bits(target);
head = target->entry.next;
/* there can already be other linked works, inherit and set */
linked = *bits & WORK_STRUCT_LINKED;
__set_bit(WORK_STRUCT_LINKED_BIT, bits);
}
debug_work_activate(&barr->work);
insert_work(pwq, &barr->work, head,
work_color_to_flags(WORK_NO_COLOR) | linked);
}
||| →
static void wq_barrier_func(struct work_struct *work)
{
struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
// (4.1.1) barr work执行完成,发出complete信号。
complete(&barr->done);
}
CMWQ实现的workqueue机制,被包装成相应的对外接口函数。
把work压入系统默认wq system_wq,WORK_CPU_UNBOUND指定worker为当前cpu绑定的normal worker_pool创建的worker。
static inline bool schedule_work(struct work_struct *work)
{
return queue_work(system_wq, work);
}
| →
static inline bool queue_work(struct workqueue_struct *wq,
struct work_struct *work)
{
return queue_work_on(WORK_CPU_UNBOUND, wq, work);
}
在schedule_work()基础上,可以指定work运行的cpu。
static inline bool schedule_work_on(int cpu, struct work_struct *work)
{
return queue_work_on(cpu, system_wq, work);
}
启动一个timer,在timer定时到了以后调用delayed_work_timer_fn()把work压入系统默认wq system_wq。
static inline bool schedule_delayed_work(struct delayed_work *dwork,
unsigned long delay)
{
return queue_delayed_work(system_wq, dwork, delay);
}
| →
static inline bool queue_delayed_work(struct workqueue_struct *wq,
struct delayed_work *dwork,
unsigned long delay)
{
return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
|| →
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay)
{
struct work_struct *work = &dwork->work;
bool ret = false;
unsigned long flags;
/* read the comment in __queue_work() */
local_irq_save(flags);
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
__queue_delayed_work(cpu, wq, dwork, delay);
ret = true;
}
local_irq_restore(flags);
return ret;
}
||| →
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay)
{
struct timer_list *timer = &dwork->timer;
struct work_struct *work = &dwork->work;
WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
timer->data != (unsigned long)dwork);
WARN_ON_ONCE(timer_pending(timer));
WARN_ON_ONCE(!list_empty(&work->entry));
/*
* If @delay is 0, queue @dwork->work immediately. This is for
* both optimization and correctness. The earliest @timer can
* expire is on the closest next tick and delayed_work users depend
* on that there's no such delay when @delay is 0.
*/
if (!delay) {
__queue_work(cpu, wq, &dwork->work);
return;
}
timer_stats_timer_set_start_info(&dwork->timer);
dwork->wq = wq;
dwork->cpu = cpu;
timer->expires = jiffies + delay;
if (unlikely(cpu != WORK_CPU_UNBOUND))
add_timer_on(timer, cpu);
else
add_timer(timer);
}
|||| →
void delayed_work_timer_fn(unsigned long __data)
{
struct delayed_work *dwork = (struct delayed_work *)__data;
/* should have been called from irqsafe timer with irq already off */
__queue_work(dwork->cpu, dwork->wq, &dwork->work);
}