前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Hadoop、spark、hive到底是什么,做算法要不要学?

Hadoop、spark、hive到底是什么,做算法要不要学?

作者头像
TechFlow-承志
发布2022-08-26 16:02:27
7790
发布2022-08-26 16:02:27
举报
文章被收录于专栏:TechFlow

作者 | 梁唐

大家好,我是梁唐。

最近我发现,很多萌新说着想要做算法工程师,但是却对这个岗位的要求以及工作内容一无所知。以为学一个Python,再学一些机器学习、深度学习的模型就可以胜任了。工作就是用Python不停地写模型。

显然,这样的想法是有问题的,如果真这么干,即使通过了面试成功入职,也会干得非常痛苦。因为你会发现这也不知道那也不知道,做啥都很吃力,需要一段很长的时间学习。而这种为了应付工作临时抱佛脚的学习往往很难深入,有种不停打补丁的感觉。

今天就和大家聊聊算法工程师的几项基本功,看看除了算法和模型之外,还需要学些什么。

hadoop

首先当然是hadoop,不过hadoop不是一门技术,而是一个大数据框架。它的logo是一只黄色的小象,据说是这个项目的创建者用女儿的玩具命名的。

经过了很多年的发展,现在hadoop框架已经非常成熟,衍生出了一个庞大的家族。有多庞大呢,我在google里给大家找了一张图,大家可以看看感受一下,这里面有多少是自己知道的,有多少没听说过。

当然对于算法工程师来说,hadoop家族并不需要全部了解,只需要着重关注几个就可以了。

hdfs

首先是hdfs,hdfs是hadoop框架中的分布式文件系统。因为在工业场景当中,数据量是非常庞大的,动辄TB甚至是PB量级。如此庞大的数据,显然不可能存在一块磁盘里,必须要分布式存储,分成不同的部分,不同的部分分开存储。通过hdfs我们可以很方便地实现这一点,可以使用一些简单的shell命令管理大规模的数据。

hdfs的内部是分片(block)存储的,并且设计了严谨的容错机制,尽可能地保证了数据的准确性。一般我们用hdfs存储一些离线数据,也就是对延迟要求不高的数据,比如模型的训练数据。它的特点是存储能力很强,但是读取速度很慢,中间的延迟很长。

因为训练数据的规模往往也非常庞大,并且从用户线上的实时行为转化成模型需要的输入,中间需要大量的计算步骤。这会带来巨大的计算压力,因此对于这样的数据,我们往往都是借助于hdfs做离线处理。设计一套数据处理流程,进行若干步骤的处理,每一步处理的中间数据都存储在hdfs上。

模型训练的时候,也通过挂载hdfs的方式直接读取tensor进行训练。

MapReduce

hdfs是hadoop的存储系统,hadoop同样也推出过一套计算系统,就是MapReduce。

我在之前的文章曾经介绍过MapReduce的原理,其实非常简单,它将数据的计算过程抽象成了两个步骤。一个步骤叫map,一个步骤叫reduce。

map步骤做的数据的映射,比如我们从一个很大的json文件当中读取出我们想要的字段,在这个步骤当中,我们从json获得了几个字段。

reduce步骤做的是汇总,我们把刚刚map阶段得到的结果,按照我们的想法汇聚在一起,比如计算平均数、中位数等等。

这个想法巧妙的地方在于map和reduce都是可以分布式进行的,比如map阶段,我们可以对hdfs里的每一个文件都设置一个map读取文件进行处理。map阶段结束之后,我们也可以起多个reducer对map的结果进行加工,尽可能导致了整个过程都是并发进行的,也就保证了数据的处理速度。

虽然MapReduce的提出到现在已经十多年了,但仍然没有淘汰,还在很多场景当中广泛使用。

hive

hive也是hadoop家族核心的一员,它的思想也很巧妙,做了一件非常有利于程序员的事情。

使用hdfs以及MapReduce其实就足够应付几乎所有大数据计算的场景了,但是足够应付并不代表应付起来很舒服。有些场景使用起来就不是很顺手,比如说我们要把两份数据关联在一起,一份是用户点击数据,一份是商品数据,我们想要得到用户点过的商品信息。

你会发现使用MapReduce去做这样一件事情会非常蛋疼,要写很多代码。所以有人突发奇想,我们能不能利用hdfs以及MapReduce做一套好用一点的数据处理系统,比如说将数据全部格式化,然后像是数据库一样使用SQL来进行数据的查询和处理?于是就有了hive。

hive底层的运算框架就是MapReduce,只不过有了表结构之后,很多之前很复杂的操作被大大简化了。尤其是数据表之间的join、group by等操作,之前需要写大量MapReduce的代码,现在几行SQL就搞定了。

不过hive毕竟不是数据库,它的使用还是有一些它自己专属的奇淫技巧。比如说避免数据倾斜的情况,比如说设置合理的内存分片,比如说udf的使用等等。

只是懂SQL的语法是写不好hive的,多少还需要做一些深入的了解。

spark

说到spark相信很多同学也是久仰大名,它是一个非常著名的开源集群计算框架,也可以理解成一个分布式计算框架。

spark在MapReduce的基础上对MapReduce当中的一些问题进行了优化,比如MapReduce每次运算结束之后都会把数据存储在磁盘上,这会带来巨大的IO开销。

而spark使用了存储器内运算技术,可以尽量减少磁盘的写入。这其中的技术细节看不懂没有关系,我们只需要知道它的运算性能比MapReduce快很多就可以了,一般来说运算速度是MapReduce的十倍以上。并且spark原生支持hdfs,所以大部分公司都是使用hdfs做数据存储,spark来进行数据运算。

在hadoop推出了hive之后,spark也推出了自己的spark SQL。不过后来hive也支持使用spark作为计算引擎代替MapReduce了,这两者的性能上差异也就很小了,我个人还是更喜欢hive一点,毕竟写起来方便。

另外spark除了计算框架之外,当中也兼容了一些机器学习的库,比如MLlib,不过我没有用过,毕竟现在机器学习的时代都快结束了。很少再有使用场景了,大家感兴趣也可以了解一下。

总结

最后做一个简单的总结,总体上来说想要成为一名合格的算法工程师,hadoop、MapReduce、hive这些或多或少都需要有所了解。不说能够精通到原理级,但至少需要会用,大概知道里面怎么回事。

这也是工业界和实验室里的最大区别,毕竟学校里的实验数据量也不会很大,直接放在内存里就完事了。所以数据处理一般都是numpy + pandas什么的,但是在公司里,几乎没有pandas的用武之地,毕竟数据量太大了,不可能都放内存里,必须要借助大数据计算平台来解决。

好了,就说这么多吧,感谢大家的阅读。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-09-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder梁 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • hadoop
  • hdfs
  • MapReduce
  • hive
  • spark
  • 总结
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档