首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【DeepMind】结构化数据少样本学习

【DeepMind】结构化数据少样本学习

作者头像
数据派THU
发布2022-08-29 10:55:08
发布2022-08-29 10:55:08
56600
代码可运行
举报
文章被收录于专栏:数据派THU数据派THU
运行总次数:0
代码可运行
代码语言:javascript
代码运行次数:0
运行
复制
来源:专知本文为资源,建议阅读5分钟充分利用少数可用的标签并使我们的模型能够利用这些信息通常是很重要的。

对结构化数据进行少样本学习可能是在现实生活中部署AI模型的基本要求。在经典的监督ML设置中,我们可以获得大量的标有标签的样本,这在现实环境中通常不是这样——一些例子是生化、健康、社会或天气环境。其中许多可以用图形表示,因此结构在设计能够成功处理这些场景的方法时也扮演着关键角色。因此,充分利用少数可用的标签并使我们的模型能够利用这些信息通常是很重要的,以便获得与通过数据需求方法获得的相同好的表示。该演讲展示了两件工作,从不同的角度解决了这个问题:场景图生成中新颖合成的图密度感知损失(Knyazev et al., 2020)和消息传递神经过程(Cangea & Day et al., 2020)。

https://catalinacangea.netlify.app/talk/roaidays_nov21/

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-08-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档