前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于LSTM的DDPG实现

基于LSTM的DDPG实现

作者头像
全栈程序员站长
发布2022-08-31 16:20:41
5780
发布2022-08-31 16:20:41
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

这两天实在不想动这个东西,想了想还是毕业要紧。 稍微跟自己搭的环境结合了一下,对于高维的状态输入可以完成训练(但效果没测试,至少跑通了),并且加入了batch训练的过程,根据伯克利课程说明,加入batch的话会让训练方差减小,提升系统的稳定性。但是因为memory那块使用list做的所以取batch的时候过程相当绕(我发现我现在写python代码还是摆脱不了java的影子啊),希望有大佬给我点建议。

最近看了一些大佬的DDPG的实现(其实都是基于莫凡大佬的那个版本),结合我自己的毕设问题,发现只是用普通的全连接网络好像不太稳定,表现也不好,于是尝试了一下试着用一直对序列数据有强大处理能力的lstm来试试(虽然这个已经有人做过了),自己手动实现了一下基于lstm的ddpg,希望各位大佬指导指导。

代码语言:javascript
复制
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from Env_2_DDPG import Environment

date_count = 5
date_dim = 6
hide_dim = 10
hide_dim_lstm = 100
gamma = 0.8
lr_miu = 0.01
lr_Q = 0.02
tau = 0.01
trans_num = 10
batch_size = 4
MAX_EPISODES = 10
MAX_EP_STEPS = 500
memory_size = 10


class My_loss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return torch.mean(-x)


class A_net(nn.Module):
    def __init__(self):
        super(A_net, self).__init__()
        self.state_dim = date_dim*date_count
        self.net = nn.LSTM(date_dim, hide_dim_lstm)
        self.reg = nn.Linear(date_count*hide_dim_lstm, 1)

    def forward(self, state):
        state = torch.Tensor(state)
        # state = torch.unsqueeze(state, 0)
        x, _ = self.net(state)
        s, b, h = x.shape
        x = x.view(s, b*h)
        x = self.reg(x)
        x = x.view(s, -1)
        return x


class C_net(nn.Module):
    def __init__(self):
        super(C_net, self).__init__()
        self.state_dim = date_count*date_dim
        self.net = nn.LSTM(date_dim, hide_dim_lstm)
        self.lstm_res = nn.Linear(date_count*hide_dim_lstm, date_count)
        self.action_net = nn.Linear(1, date_count)
        self.reg = nn.Linear(date_count, 1)

    def forward(self, state, action):
        state = torch.Tensor(state)
        x1, _ = self.net(state)
        x2 = self.action_net(action)
        s, b, h = x1.shape
        x1 = x1.view(s, b*h)
        x1 = self.lstm_res(x1)
        x = self.reg(x1+x2)
        x = x.view(s, -1)
        return x


class ddpg_lstm(nn.Module):
    def __init__(self):
        super(ddpg_lstm, self).__init__()
        self.miu_net = A_net()
        self.miu_pie = A_net()
        self.Q_net = C_net()
        self.Q_pie = C_net()
        self.optim_miu = optim.SGD(self.miu_net.parameters(), lr=lr_miu, momentum=0.5)
        self.optim_Q = optim.Adam(self.Q_net.parameters(), lr=lr_Q)
        self.loss_Q = nn.MSELoss()
        self.memory = list()
        self.index = 0

    def learn(self, tra):
        s = torch.Tensor(tra[0])
        s = s.reshape(batch_size, date_count, date_dim)
        r = torch.Tensor(tra[1])
        a = torch.Tensor(tra[2])
        s_ = torch.Tensor(tra[3])
        s_ = s_.reshape(batch_size, date_count, date_dim)
        a_ = self.miu_pie(s_)
        y = r + gamma*self.Q_pie(s_, a_)
        # a = torch.Tensor(np.array([a]))
        q = self.Q_net(s, a)

        self.optim_Q.zero_grad()
        q_loss = self.loss_Q(y, q)
        q_loss.backward(retain_graph=True)
        self.optim_Q.step()

        self.optim_miu.zero_grad()
        _miu_loss = My_loss()
        miu_loss = _miu_loss(q)
        miu_loss.backward()
        self.optim_miu.step()

    def soft_update(self):
        self.miu_pie.net.weight.data = tau*self.miu_net.net.weight.data + (1-tau)*self.miu_pie.net.weight.data
        self.miu_pie.reg.weight.data = tau*self.miu_net.reg.weight.data + (1-tau)*self.miu_pie.reg.weight.data
        self.Q_pie.net.weight.data = tau*self.Q_net.net.weight.data + (1-tau)*self.Q_pie.net.weight.data
        self.Q_pie.action_net.weight.data = tau*self.Q_net.action_net.weight.data + (1-tau)*self.Q_pie.action_net.weight.data
        self.Q_pie.reg.weight.data = tau*self.Q_net.reg.weight.data + (1-tau)*self.Q_pie.reg.weight.data

        # for x in self.miu_net.state_dict().keys():
        # eval('self.miu_net.' + x + '.data.mul_((1-TAU))')
        # eval('self.miu_net.' + x + '.data.add_(TAU*self.Actor_eval.' + x + '.data)')
        # for x in self.Critic_target.state_dict().keys():
        # eval('self.Critic_target.' + x + '.data.mul_((1-TAU))')
        # eval('self.Critic_target.' + x + '.data.add_(TAU*self.Critic_eval.' + x + '.data)')

    def store_trans(self, s, r, a, s_):
        temp = list()
        temp.append(s)
        temp.append(r)
        temp.append(a)
        temp.append(s_)
        self.memory.append(temp)
        self.index += 1
        if self.index > trans_num:
            del self.memory[0]

    def train_model(self):
        batch = np.random.choice(memory_size, batch_size)
        bs = np.zeros((batch_size, date_count*date_dim))
        br = np.zeros((batch_size, 1))
        ba = np.zeros((batch_size, 1))
        bs_ = np.zeros((batch_size, date_count*date_dim))
        index_ = 0
        for item in batch:
            bs[index_] = (np.array(self.memory[item][0])).reshape(date_dim*date_count)
            br[index_] = self.memory[item][1]
            ba[index_] = self.memory[item][2]
            bs_[index_] = (np.array(self.memory[item][3])).reshape(date_dim*date_count)
            index_ += 1
            # self.learn(self.memory[item])
        self.learn([bs, br, ba, bs_])
        print('over')
        # self.learn(tra)
            # self.learn()

    def next_action(self, state):
        action = self.miu_net(state)
        return action.detach()


ddpg = ddpg_lstm()
env = Environment()


def train():
    for i in range(MAX_EPISODES):
        # if i > 50:
        # print(i)
        s = env.reset()
        ep_reward = 0
        for j in range(MAX_EP_STEPS):
            a = ddpg.next_action(s)
            s_, r = env.step(a)
            ddpg.store_trans(s, a, r/10, s_)
            if ddpg.index > memory_size:
                ddpg.train_model()
            s = s_
            ep_reward += r
        if i % 1 == 0 and i > 0:
            print('Episode:', i, ' Reward: %i' % int(ep_reward))
    torch.save(ddpg, 'ddpg2.pt')

需要注意的是我这个没有对数据进行处理,主要针对的是单个数据,还没有针对batch数据,因此在数据送入lstm模型之前手动加了个torch.unsqueeze()强行扩展一个维度。 目前程序处在能跑通的阶段,后续有时间的话继续更新吧。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/151665.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
批量计算
批量计算(BatchCompute,Batch)是为有大数据计算业务的企业、科研单位等提供高性价比且易用的计算服务。批量计算 Batch 可以根据用户提供的批处理规模,智能地管理作业和调动其所需的最佳资源。有了 Batch 的帮助,您可以将精力集中在如何分析和处理数据结果上。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档