前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >网站有反爬机制就爬不了数据?那是你不会【反】反爬!道高一尺魔高一丈啊!

网站有反爬机制就爬不了数据?那是你不会【反】反爬!道高一尺魔高一丈啊!

作者头像
全栈程序员站长
发布2022-09-05 11:32:54
1.1K0
发布2022-09-05 11:32:54
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

不知道你们在用爬虫爬数据的时候是否有发现,越来越多的网站都有自己的反爬机制,抓取数据已经不像以前那么容易,目前常见的反爬机制主要有以下几种:

  1. 数据是通过动态加载的,比如微博,今日头条,b站
  2. 需要登录,需要验证码,比如铁路12306,淘宝,京东
  3. 请求次数频繁,IP地址在同一时间访问次数过多,导致IP被封
  4. 数据屏蔽方式,比如访问的数据不在源码中,数据隐藏在js中,比如今日分享,b站

网站为什么要设置反爬机制?有两个原因,一是为了保护网站安全,减轻服务器压力,另一个原因则是保护网站数据安全。

爬虫技术者与反爬技术者一直以来就像是左右手互博,你有反爬机制,我就有反反爬技术,即见即可爬,道高一尺魔高一丈。

今天就为大家详细介绍网站的反爬虫机制和实用的应对方法,一般网站从三个方面反爬虫:

1.用户请求的Headers 2.用户行为 3.网站目录和数据加载方式

前两种比较容易遇到,大多数网站都从这些角度来反爬虫。第三种一些应用ajax的网站会采用,这样增大了爬取的难度(防止静态爬虫使用ajax技术动态加载页面)。


1、从用户请求的Headers反爬虫。

这种是最常见的反爬机制,在访问某些网站的时候,网站通常会用判断访问是否带有头文件来鉴别该访问是否为爬虫,用来作为反爬取的一种策略。

那我们就需要伪装headers。很多网站都会对Headers的User-Agent进行检测,还有一部分网站会对Referer进行检测(一些资源网站的防盗链就是检测Referer)。

如果遇到了这类反爬虫机制,可以直接在爬虫中添加Headers,将浏览器的User-Agent复制到爬虫的Headers中;或者将Referer值修改为目标网站域名。

往往容易被忽略,通过对请求的抓包分析,确定referer,在程序中模拟访问请求头中添加。

对于检测Headers的反爬虫,在爬虫中修改或者添加Headers就能很好的绕过。

例如打开搜狐首页,先来看一下Chrome的头信息(F12打开开发者模式)如下:

如图,访问头信息中显示了浏览器以及系统的信息(headers所含信息众多,其中User-Agent就是用户浏览器身份的一种标识,具体可自行查询)

Python中urllib中的request模块提供了模拟浏览器访问的功能,代码如下:

代码语言:javascript
复制
from urllib import request 

url = http://www. baidu.com 
# page= requestRequest (url)
# page add header (' User-Agent',' Mozilla/5.0(Windows NT 10.0; Win64; x64) AppleWebki
headers ={ 
   'User-Agent': ' Mozilla/5.0(Windows NT 10.0; Win64; x64) AppleWebkit/537. 36'}
page = request Request(url, headersheaders)
page_info = request urlopen(page). read().decode('utf-8')
print(page_info)

可以通过add_header(key, value) 或者直接以参数的形式和URL一起请求访问

代码语言:javascript
复制
urllib.request Request()
urllib.request Request(url, data=None, headers={ 
   }, origin req host=None, unverifiable )

其中headers是一个字典,通过这种方式可以将爬虫模拟成浏览器对网站进行访问。


2、基于用户行为反爬虫

还有一部分网站是通过检测用户行为,例如同一IP短时间内多次访问同一页面,或者同一账户短时间内多次进行相同操作。

这种防爬,需要有足够多的ip来应对。

(1)大多数网站都是前一种情况,对于这种情况,使用IP代理就可以解决。可以专门写一个爬虫,爬取网上公开的代理ip,检测后全部保存起来。有了大量代理ip后可以每请求几次更换一个ip,这在requests或者urllib中很容易做到,这样就能很容易的绕过第一种反爬虫。

编写爬虫代理:

步骤:

1.参数是一个字典{‘类型’:‘代理ip:端口号’}   proxy_support=urllib.request.ProxyHandler({}) 2.定制、创建一个opener   opener=urllib.request.build_opener(proxy_support) 3.安装opener   urllib.request.install_opener(opener) 4.调用opener   opener.open(url)

用大量代理随机请求目标网站,应对反爬虫

代码语言:javascript
复制
import urllib request 
import random 
import re

url='http://www. whatismyip. com. tw '
iplist=['121.193.143.249:88',"112.126.65.193:88',122.96.59.184:82',115.29.98.139:9]
        
proxy_support = urllib. request Proxyhandler({ 
   'httP': random choice(iplist)})
opener = urllib.request.build_opener(proxy_suppor)
opener.addheaders=[(' User-Agent, ' Mozilla/5.0(X11; Linux x86-64) AppleWebkit/537.36'
urllib.request.install_opener(opener)
response = urllib.request.urlopen(url)
html = response.read().decode(' utf-8)
                              
pattern = re.compile('<h1>(.*?)</h1>.*?<h2>(,*?)</h2>')
iterms=re.findall(pattern, html)
                              
for item in iterms:
    print(item[0]+:"+item[1])

(2)对于第二种情况,可以在每次请求后随机间隔几秒再进行下一次请求。有些有逻辑漏洞的网站,可以通过请求几次,退出登录,重新登录,继续请求来绕过同一账号短时间内不能多次进行相同请求的限制。

对于账户做防爬限制,一般难以应对,随机几秒请求也往往可能被封,如果能有多个账户,切换使用,效果更佳。


3、动态页面的反爬虫

上述的几种情况大多都是出现在静态页面,还有一部分网站,我们需要爬取的数据是通过ajax请求得到,或者通过Java生成的。

解决方案:Selenium+PhantomJS

Selenium:自动化web测试解决方案,完全模拟真实的浏览器环境,完全模拟基本上所有的用户操作

PhantomJS :一个没有图形界面的浏览器

比如获取淘宝的个人详情地址:

代码语言:javascript
复制
from selenium import webdriver 
import time 
import re 

drive = webdriver.PhantomJs(executable_path = ' phantomjs-21.1-linux-x86 64/bin/phanto drive.get('https://mm. taobaocom/self/modelinfohtm? userid=189942305& iscoment=fal)

time. sleep(5)

pattern = re.compile(r'<div. *? mm-p-domain-info>*? class="mm-p-info-cell clearfix">.
html = drive.page_source.encode(' utf-8,' ignore')
items=re.findall(pattern, html)
for item in items:
	print(item[0], 'http':+item[1])
drive.close()

4.总结

最后给大家总结一下前面所讲的反爬机制应对策略(反反爬):

  1. 伪装浏览器
  2. 使用代理IP
  3. 抓包分析突破异步加载 / selenium自动化测试工具
  4. 添加cookie

最后嘱咐大家一句,爬虫世界确实很有意思,技术是无罪的,学习是可以的,但还是实际操作就要适可而止了,不要触碰到法律的边界线。


感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走,在我的QQ技术交流群里(技术交流和资源共享,广告进来腿给你打断)可以自助拿走,群号1044939456。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/136099.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年6月4,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、从用户请求的Headers反爬虫。
  • 2、基于用户行为反爬虫
  • 3、动态页面的反爬虫
  • 4.总结
相关产品与服务
验证码
腾讯云新一代行为验证码(Captcha),基于十道安全栅栏, 为网页、App、小程序开发者打造立体、全面的人机验证。最大程度保护注册登录、活动秒杀、点赞发帖、数据保护等各大场景下业务安全的同时,提供更精细化的用户体验。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档