前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >numpy的堆叠数组函数stack()、vstack()、dstack()、concatenate()函数详解

numpy的堆叠数组函数stack()、vstack()、dstack()、concatenate()函数详解

作者头像
嵌入式视觉
发布2022-09-05 14:05:40
2.3K0
发布2022-09-05 14:05:40
举报
文章被收录于专栏:嵌入式视觉

Contents

numpy常用堆叠数组函数

在做图像和nlp数组数据处理的时候,经常要实现两个数组堆叠或者连接的功能,这经常用numpy库的一些函数实现,常用于堆叠数组的numy函数如下:

  • stack : Join a sequence of arrays along a new axis.
  • hstack: Stack arrays in sequence horizontally (column wise).
  • vstack : Stack arrays in sequence vertically (row wise).
  • dstack : Stack arrays in sequence depth wise (along third axis).
  • concatenate : Join a sequence of arrays along an existing axis.

stack()函数

stack()函数原型是stack(arrays, axis=0, out=None),功能是沿着给定轴连接数组序列,轴默认为第0维。

参数解析:

arrays: 类似数组(数组、列表)的序列,这里的每个数组必须有相同的shape。 axis: 默认为整形数据,axis决定了沿着哪个维度stack输入数组。

返回:

stacked : ndarray    The stacked array has one more dimension than the input arrays.

实例如下:

代码语言:javascript
复制
import numpy as np
# 一维数组进行stack
a1 = np.array([1, 3, 4])    # shape (3,)
b1 = np.array([4, 6, 7])    # shape (3,)
c1 = np.stack((a,b))
print(c1)
print(c1.shape)    # (2,3)
# 二维数组进行堆叠
a2 = np.array([[1, 3, 5], [5, 6, 9]])    # shape (2,3)
b2 = np.array([[1, 3, 5], [5, 6, 9]])    # shape (2,3)
c2 = np.stack((a2, b2), axis=0)
print(c2)
print(c2.shape)

输出为:

[[1 3 4] [4 6 7]] (2, 3) [[[1 3 5] [5 6 9]] [[1 3 5] [5 6 9]]] (2, 2, 3)

可以看到,进行stack的两个数组必须有相同的形状,同时,输出的结果的维度是比输入的数组都要多一维的。我们拿第一个例子来举例,两个含3个数的一维数组在第0维进行堆叠,其过程等价于先给两个数组增加一个第0维,变为1*3的数组,再在第0维进行concatenate()操作:

代码语言:javascript
复制
a = np.array([1, 3, 4])
b = np.array([4, 6, 7])
a = a[np.newaxis,:]
b = b[np.newaxis,:]
np.concatenate([a,b],axis=0)

输出为:

array([[1, 2, 3],       [2, 3, 4]])

vstack()函数

vstack函数原型是vstack(tup),功能是垂直的(按照行顺序)堆叠序列中的数组。tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。1-D arrays must have the same length.

代码语言:javascript
复制
# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.vstack((a,b))

array([[1, 2, 3], [2, 3, 4]])

代码语言:javascript
复制
# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.vstack((a,b))

array([[1], [2], [3], [2], [3], [4]])

hstack()函数

hstack()的函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它其实就是水平(按列顺序)把数组给堆叠起来,与vstack()函数正好相反。举几个简单的例子:

代码语言:javascript
复制
# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.hstack((a,b))

array([1, 2, 3, 2, 3, 4])

代码语言:javascript
复制
# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.hstack((a,b))

array([[1, 2], [2, 3], [3, 4]])

vstack()和hstack函数对比:

这里的v是vertically的缩写,代表垂直(沿着行)堆叠数组,这里的h是horizontally的缩写,代表水平(沿着列)堆叠数组。 tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。

np.concatenate() 函数

concatenate()函数功能齐全,理论上可以实现上面三个函数的功能,concatenate()函数根据指定的维度,对一个元组、列表中的list或者ndarray进行连接,函数原型:

代码语言:javascript
复制
numpy.concatenate((a1, a2, ...), axis=0)
代码语言:javascript
复制
a = np.array([[1, 2], [3,4]])               
b = np.array([[5, 6], [7, 8]])
# a、b的shape为(2,2),连接第一维就变成(4,2),连接第二维就变成(2,4)
np.concatenate((a, b), axis=0)

array([[1, 2], [3, 4], [5, 6], [7, 8]])

注意:axis指定的维度(即拼接的维度)可以是不同的,但是axis之外的维度(其他维度)的长度必须是相同的。 注意concatenate函数使用最广,必须在项目中熟练掌握。

参考资料

numpy中的hstack()、vstack()、stack()、concatenate()函数详解

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-02-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • numpy常用堆叠数组函数
  • stack()函数
  • vstack()函数
  • hstack()函数
  • np.concatenate() 函数
  • 参考资料
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档