前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >FPN论文阅读笔记

FPN论文阅读笔记

作者头像
嵌入式视觉
发布2022-09-05 14:29:56
4480
发布2022-09-05 14:29:56
举报
文章被收录于专栏:嵌入式视觉

Contents

本篇文章是论文阅读笔记和网络理解心得总结而来,部分资料和图参考论文和网络资料

论文背景

FPN(feature pyramid networks) 是何凯明等作者提出的适用于多尺度目标检测算法。原来多数的 object detection 算法(比如 faster rcnn)都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的。

引言(Introduction)

金字塔结构对比

从上图可以看出,(a)使用图像金字塔构建特征金字塔。每个图像尺度上的特征都是独立计算的,速度很慢。(b)最近的检测系统选择(比如Faster RCNN)只使用单一尺度特征进行更快的检测。(c)另一种方法是重用ConvNet(卷积层)计算的金字塔特征层次结构(比如SSD),就好像它是一个特征化的图像金字塔。(d)我们提出的特征金字塔网络(FPN)与(b)和(c)类似,但更准确。在该图中,特征映射用蓝色轮廓表示,较粗的轮廓表示语义上较强的特征

特征金字塔网络 FPN

作者提出的 FPN 结构如下图:这个金字塔结构包括一个自底向上的线路,一个自顶向下的线路和横向连接(lateral connections)

金字塔结构图

自底向上其实就是卷积网络的前向过程。在前向过程中,feature map 的大小在经过某些层后会改变,而在经过其他一些层的时候不会改变,作者将不改变 feature map 大小的层归为一个 stage,因此这里金字塔结构中每次抽取的特征都是每个 stage 的最后一个层的输出。在代码中我们可以看到共有 C1、C2、C3、C4、C5五个特征图,C1和C2的特征图大小是一样的,所以,FPN 的建立也是基于从C2到C5这四个特征层上。 

自顶向下的过程采用上采样(upsampling)进行,而横向连接则是将上采样的结果和自底向上生成的相同大小的 feature map 进行融合(merge)。在融合之后还会再采用 3*3 的卷积核对每个融合结果进行卷积,目的是消除上采样的混叠效应(aliasing effect)。并假设生成的feature map结果是 P2,P3,P4,P5,和原来自底向上的卷积结果 C2,C3,C4,C5一一对应。 

下图是一个ResNet的结构图:论文中作者采用 Conv2,CONV3,CONV4 和 CONV5 的输出,对应 C1,C2,C3,C4,C5,因此类似 Conv2 就可以看做一个stage。 

ResNet结构图

FPN 网络建立

这里自己没有总结,因为已经有篇博文总结得很不错了,在这

通过ResNet50网络,得到图片不同阶段的特征图,最后利用 C2,C3,C4,C5 建立特征图金字塔结构:

  1. 将 C5 经过256个 1*1 的卷积核操作得到:32*32*256,记为P5;
  2. 将 P5 进行步长为 2 的上采样得到 64*64*256,再与C4经过的256个1*1卷积核操作得到的结果相加,得到64*64*256,记为P4;
  3. 将 P4 进行步长为 2 的上采样得到 128*128*256,再与C3经过的256个1*1卷积核操作得到的结果相加,得到128*128*256,记为P3;
  4. 将 P3 进行步长为 2 的上采样得到 256*256*256,再与C2经过的256个1*1卷积核操作得到的结果相加,得到256*256*256,记为P2;
  5. 将 P5 进行步长为 2 的最大池化操作得到:16*16*256,记为P6;  结合从 P2 到 P6 特征图的大小,如果原图大小1024*1024, 那各个特征图对应到原图的步长依次为[P2,P3,P4,P5,P6]=>[4,8,16,32,64]。

Anchor锚框生成规则

Faster RCNN 采用 FPN 的网络作 backbone 后,锚框的生成规则也会有所改变。基于上一步得到的特征图 [P2,P3,P4,P5,P6],再介绍下采用 FPN 的 Faster RCNN(或者Mask RCNN)网络中Anchor锚框的生成,根据源码中介绍的规则,与之前的Faster-RCNN中的生成规则有一点差别。

  1. 遍历 P2 到 P6 这五个特征层,以每个特征图上的每个像素点都生成 Anchor 锚框;
  2. 以 P2 层为例,P2 层的特征图大小为 256*256,相对于原图的步长为4,这样 P2上的每个像素点都可以生成一个基于坐标数组 [0,0,3,3] 即 4*4 面积为 16 大小的Anchor锚框,当然,可以设置一个比例SCALE,将这个基础的锚框放大或者缩小,比如,这里设置 P2 层对应的缩放比例为 16,那边生成的锚框大小就是长和宽都扩大16倍,从 4*4 变成 64*64,面积从 16 变成 4096,当然在保证面积不变的前提下,长宽比可以变换为 32*128、64*64 或 128*32,这样以长、宽比率 RATIO = [0.5,1,2] 完成了三种变换,这样一个像素点都可以生成3个Anchor锚框。在 Faster-RCNN 中可以将 Anchor scale 也可以设置为多个值,而在MasK RCNN 中则是每一特征层只对应着一个 Anchor scale即对应着上述所设置的 16
  3. 以 P2 层每个像素点位中心,对应到原图上,则可生成256*256*3(长宽三种变换) = 196608 个锚框;
  4. 以 P3 层每个像素点为中心,对应到原图上,则可生成128*128*3 = 49152 个锚框;
  5. 以 P4 层每个像素点为中心,对应到原图上,则可生成64*64*3 = 12288 个锚框;
  6. 以 P5 层每个像素点为中心,对应到原图上,则生成32*32*3 = 3072 个锚框;
  7. 以 P6 层每个像素点为中心,对应到原图上,则生成16*16*3 = 768 个锚框。

从P2到P6层一共可以在原图上生成 196608 + 49152 + 12288 + 3072 + 768 = 261888个Anchor锚框。

实验

看看加入FPN的RPN网络的有效性,如下表Table1。网络这些结果都是基于ResNet-50。评价标准采用AR,AR表示Average Recall,AR右上角的100表示每张图像有100个anchor,AR的右下角s,m,l表示COCO数据集中object的大小分别是小,中,大。feature列的大括号{}表示每层独立预测。 

采用FPN的目标检测指标对比实验

从(a)(b)(c)的对比可以看出FRN的作用确实很明显。另外(a)和(b)的对比可以看出高层特征并非比低一层的特征有效。  (d)表示只有横向连接,而没有自顶向下的过程,也就是仅仅对自底向上(bottom-up)的每一层结果做一个1*1的横向连接和3*3的卷积得到最终的结果,有点像Fig1的(b)。从feature列可以看出预测还是分层独立的。作者推测(d)的结果并不好的原因在于在自底向上的不同层之间的semantic gaps比较大。  (e)表示有自顶向下的过程,但是没有横向连接,即向下过程没有融合原来的特征。这样效果也不好的原因在于目标的location特征在经过多次降采样和上采样过程后变得更加不准确。  (f)采用finest level层做预测(参考Fig2的上面那个结构),即经过多次特征上采样和融合到最后一步生成的特征用于预测,主要是证明金字塔分层独立预测的表达能力。显然finest level的效果不如FPN好,原因在于PRN网络是一个窗口大小固定的滑动窗口检测器,因此在金字塔的不同层滑动可以增加其对尺度变化的鲁棒性。另外(f)有更多的anchor,说明增加anchor的数量并不能有效提高准确率

FPN代码

这里给出一个基于 Pytorch 的 FPN代码,来自这里

代码语言:javascript
复制
 class FPN(nn.Module):
    def __init__(self, block, num_blocks):
        super(FPN, self).__init__()
        self.in_planes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        # Bottom-up layers, backbone of the network
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        # Top layer
        # 我们需要在C5后面接一个1x1, 256 conv,得到金字塔最顶端的feature
        self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) # Reduce channels
        # Smooth layers
        # 这个是上面引文中提到的抗aliasing的3x3卷积
        self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        # Lateral layers
        # 为了匹配channel dimension引入的1x1卷积
        # 注意这些backbone之外的extra conv,输出都是256 channel
        self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)
    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)
    ## FPN的lateral connection部分: upsample以后,element-wise相加
    def _upsample_add(self, x, y):
        '''Upsample and add two feature maps.
        Args:
          x: (Variable) top feature map to be upsampled.
          y: (Variable) lateral feature map.
        Returns:
          (Variable) added feature map.
        Note in PyTorch, when input size is odd, the upsampled feature map
        with `F.upsample(..., scale_factor=2, mode='nearest')`
        maybe not equal to the lateral feature map size.
        e.g.
        original input size: [N,_,15,15] ->
        conv2d feature map size: [N,_,8,8] ->
        upsampled feature map size: [N,_,16,16]
        So we choose bilinear upsample which supports arbitrary output sizes.
        '''
        _,_,H,W = y.size()
        return F.upsample(x, size=(H,W), mode='bilinear') + y
    def forward(self, x):
        # Bottom-up
        c1 = F.relu(self.bn1(self.conv1(x)))
        c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1)
        c2 = self.layer1(c1)
        c3 = self.layer2(c2)
        c4 = self.layer3(c3)
        c5 = self.layer4(c4)
        # Top-down
        # P5: 金字塔最顶上的feature
        p5 = self.toplayer(c5)
        # P4: 上一层 p5 + 侧边来的 c4
        # 其余同理
        p4 = self._upsample_add(p5, self.latlayer1(c4))
        p3 = self._upsample_add(p4, self.latlayer2(c3))
        p2 = self._upsample_add(p3, self.latlayer3(c2))
        # Smooth
        # 输出做一下smooth
        p4 = self.smooth1(p4)
        p3 = self.smooth2(p3)
        p2 = self.smooth3(p2) 

参考资料

FPN(feature pyramid networks)算法讲解 Mask RCNN 源代码解析 (1) – 整体思路 Mask RCNN 学习笔记 论文 – Feature Pyramid Networks for Object Detection (FPN)

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-11-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 论文背景
  • 引言(Introduction)
  • 特征金字塔网络 FPN
    • FPN 网络建立
      • Anchor锚框生成规则
      • 实验
      • FPN代码
      • 参考资料
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档