前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【损失函数系列】softmax loss损失函数详解

【损失函数系列】softmax loss损失函数详解

作者头像
全栈程序员站长
发布2022-09-13 15:09:50
1K0
发布2022-09-13 15:09:50
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

1.损失函数:

损失函数(loss function)是用来评测模型的预测值f(x)与真实值Y的相似程度,损失函数越小,就代表模型的鲁棒性越好,损失函数指导模型学习。根据损失函数来做反向传播修改模型参数。机器学习的目的就是学习一组参数,使得预测值与真值无限接近。

2.softmax loss:

它是损失函数的一种,是softmax和cross-entropy loss组合而成的损失函数。

先看softmax,其函数形式如下:其中z就是某个神经网络全连接层输出的一组结果,例如分类问题,做4分类,z就是一个1*4的向量。j就是0~3下标号。zk就是全连接层第k个值。

(1)

全连接输出向量z的每个值没有大小限制,显然通过(1)后就强制将它给限制在0~1之间了,变成概率值。

cross-entropy loss 交叉熵损失函数在我的博客详细写了下:https://blog.csdn.net/gbz3300255/article/details/106810047

这里就直接上交叉熵的公式了:

(2)

f(zc)就是上面的f(fzk),就是 softmax函数的输出值。yc就是样本真值喽。公式(2)就是最终的损失函数值了。

举例说明:例如真实样本标签为

yc = [0, 0, 1, 0]。

而第一个预测结果为

f(z1) = [0.1, 0.1, 0.7, 0.1]

f(z2) = [0.25, 0.2, 0.3, 0.35]

f(z3) = [0.15, 0.2, 0.1, 0.55]

显然第一个预测结果是对的,第二个,第三个都是错的。他们的损失函数值分别为

Lz1 = -log0.7

Lz2 = -log0.3

Lz3 = -log0.1

L函数图像如下:

显然,与真值越接近,损失函数越小,与真值相去越远 ,损失函数越大。优化过程就是不断的将与真值接近的那个概率值提升,提升,再提升,让损失函数降低,降低,再降低。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/153156.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.损失函数:
  • 2.softmax loss:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档