前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【NLP】Transformer理论解读

【NLP】Transformer理论解读

作者头像
zstar
发布2022-09-16 14:59:15
5350
发布2022-09-16 14:59:15
举报
文章被收录于专栏:往期博文

前言

Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,目前已经在目标检测、自然语言处理、时序预测等多个深度学习领域获得了应用,成为了新的研究热点。

论文题目:Attention Is All You Need 论文地址:https://arxiv.org/pdf/1706.03762v5.pdf

模型结构

不同于传统神经网络的CNN和RNN,Transformer是一种全新的Sequence to Sequence的结构,论文中的网络结构图如下:

在这里插入图片描述
在这里插入图片描述

图中,左半部分为编码器(Encoder)结构,后半部分为解码器(Decoder)结构。这里的Nx表示编码器和解码器分别有N个,论文中使用的是6个。注意这N个结构并不是简单copy,而是每个单独进行训练。

这张图乍一看有点复杂,下面将根据输入-输出的步骤,对各模块进行拆解分析。

Input Embedding

首先,输入的文字内容,需要进行词嵌入(Word Embedding)的操作,这个在NLP中比较常见。

One-Hot Encoding

在词嵌入之前,首先需要对输入的句子进行独热编码,即每一个单词仅有一个为1,其余为0。

在这里插入图片描述
在这里插入图片描述

Word Embedding

独热编码带来的问题是如果句子中的词很多,那么对于每一个词来说存在大量0,太浪费存储空间。 于是一个改进想法就是,设计一个可学习的权重矩阵W,将词向量与这个矩阵进行点乘,得到新的表示结果。

10000 和权重矩阵W

[ w00, w01, w02 w10, w11, w12 w20, w21, w22 w30, w31, w32 w40, w41, w42 ]

点乘的结果为[w00, w01, w02],这样就成功将1x5的数据降维成了1x3,完成了Embedding。

Position Encoding

有了词向量之后,下面就需要进行位置编码(Position Encoding),这是因为Transformer处理的都是高度并行化的数据,不像RNN一样,输入的内容是有先后顺序的,是一句话的所有内容一起输入,因此需要对其进行位置编码,防止位置发生错乱。

位置编码的公式如下[2]:

在这里插入图片描述
在这里插入图片描述

pos代表的是词在句子中的位置,

d_{model}

是词向量的维度(通常经过word embedding后是512),2i代表的是d中的偶数维度,2i + 1则代表的是奇数维度,这种计算方式使得每一维都对应一个正弦曲线。

这样就保证了不同位置在所有维度上不会被编码到完全一样的值,从而使每个位置都获得独一无二的编码。同时,它将允许模型通过相对位置轻松学习。

之后,将位置编码的结果和Embedding的结果进行相加,得到的结果输入到模型中。

在这里插入图片描述
在这里插入图片描述

Self-Attention

多头注意力机制(Multi-Head Attention)是Transformer的核心机制,在此之前,首先需要理解自注意力机制(Self-Attention)。

如下图[3]所示,对于输入的x,乘上w做词嵌入(就是上面提到的操作),得到模型输入的向量a。 然后,对于每一个a,分别乘上

W^q

W^k

W^v

,得到三个向量q,k,v。

在这里插入图片描述
在这里插入图片描述

之后,将每一个q分别点乘k,这样可以得到注意力矩阵。所得结果/根号d,d就是q和k的维度,这样是做一个标准化,方便计算。

在这里插入图片描述
在这里插入图片描述

对于得到的注意力

\alpha

,再进行一个soft-max归一化。

在这里插入图片描述
在这里插入图片描述

然后,将每个词的注意力分别乘以v,然后进行累加,得到输入的b向量。

论文里给出的公式如下:

在这里插入图片描述
在这里插入图片描述

例如,下图中展示

b^1

的计算步骤。

在这里插入图片描述
在这里插入图片描述

同理,

b^2

也可以类似得到。

在这里插入图片描述
在这里插入图片描述

以此类推,通过Self-Attention层之后,输入的a可以转化成b。

在这里插入图片描述
在这里插入图片描述

上面展现了单行句子输入的场景,而在实际过程中,可以利用线性代数中的矩阵乘法,来实现多行句子一起输入并行处理,这样也能够更好得发挥GPU并行计算的性能。

在这里插入图片描述
在这里插入图片描述

Multi-Head Attention

理解了Self-Attention之后,多头注意力机制(Multi-Head Attention)就比较容易理解。 如下图所示,所谓多头,就是使用多组不同的

W^q

W^k

W^v

,这样就得到了不同的注意力。

在这里插入图片描述
在这里插入图片描述

直观描述,不同的注意力头的关注点会不同,从而可以提取一段文本中不同的信息。

在这里插入图片描述
在这里插入图片描述

Add&Norm

Add&Norm包含两个结构:Add和Layer Norm。

Add比较简单,主要是应用到了残差网络(ResNet)的思想,将输入前的向量a直接复制一份添加到输出的b上,这样可以有效防止梯度消失的问题。

Layer Norm计算方式也比较简单,就是对每一个向量做一个标准化(减均值/标准差)。

对于Norm通常用的更多的是Batch Norm,也就是在图像领域频繁使用的BN层。它的方法是对于每一个批次的同维数据做一个标准化,下图是Layer Norm和Batch Norm的直观对比。

在这里插入图片描述
在这里插入图片描述

那这里为什么不用BN层呢? 这是因为在NLP任务中,输入是动态的。对于BN来说,只有在Batch_Size足够大的情况下,效果才会好。下图就展示了一种特殊情况,对于特别长的句子来说,后面的Batch_Size相当于1,这样效果不好。

在这里插入图片描述
在这里插入图片描述

Masked Multi-Head Attention

后面的Feed Forward就是一个普通的前馈神经网络,没有特殊之处。这样左侧编码器部分就分析完了,进入到右侧的解码器部分。

在解码器部分可以看到,里面的结构和编码器大致相当,唯一不同的是多了一个Masked Multi-Head Attention。

Masked Multi-Head Attention就是在Multi-Head Attention的基础上增加了一个遮罩(Masked),因为在训练中,处理当前词时,后面的词并不应该存在,但是训练集中后面的词(ground truth)是存在的,不可以做attention,所以要遮盖掉。

在这里插入图片描述
在这里插入图片描述

至此,关于Transformer的各模块就全部分析完成。

总结

Transformer的出现颠覆了以往CNN提取特征的模式,不过,我也听说Transformer因其巨大的特征量导致非常难以训练。关于这一点,后续我将通过实验去证实。

References

[1]https://www.jianshu.com/p/e6b5b463cf7b [2]https://www.bilibili.com/video/BV1Di4y1c7Zm [3]https://www.bilibili.com/video/BV1J441137V6 [4]https://mp.weixin.qq.com/s/73RAMVGpguFw-fteQwFTIw

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-07-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 模型结构
  • Input Embedding
    • One-Hot Encoding
      • Word Embedding
      • Position Encoding
      • Self-Attention
      • Multi-Head Attention
      • Add&Norm
      • Masked Multi-Head Attention
      • 总结
      • References
      相关产品与服务
      NLP 服务
      NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档