前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >最详细动态规划解析——背包问题

最详细动态规划解析——背包问题

作者头像
全栈程序员站长
发布2022-09-19 19:11:33
3070
发布2022-09-19 19:11:33
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

动态规划的定义

要解决一个复杂的问题,可以考虑先解决其子问题。这便是典型的递归思想,比如最著名的斐波那契数列,讲递归必举的例子。

斐波纳契数列的定义如下:F(0)=1,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*) 用递归可以很快写出这样一个函数,咋一看真牛逼,几行代码就搞定了

代码语言:javascript
复制
int fib(int i)
{
    if(i <= 1)
    {
        return 0;
    }
    return fib(i - 1) + fib(i - 2);
}

将该函数的执行过程用图表示出来,就会发现fib4执行了一次,fib3执行了两次,fib2执行了三次,fib1计算了5次,重复的次数呈现爆发增长,接近与指数级。如果n取得足够大,暂且不说费时的问题,直接就会因为递归次数太多,函数堆栈溢出而程序奔溃。

image
image

那么很快就有人想到,用一个数组来保存曾经计算过的数据来避免重复计算。这种思想便是动态规划! 我们来实现一下

代码语言:javascript
复制
#include <iostream>
#include <stdlib.h>
#include <vector>

using namespace std;

int fib(int n, vector<int>& vec);

int main(int argc, char** argv)
{
        if(argc != 2)
        {
                cout << "usage: ./a.out number" << endl;
        }
        int num = atoi(argv[1]);

        vector<int> vec(num + 1, -1);

        int ret = fib(num, vec);

        cout << "fib(" << argv[1] << ")" << " = " << ret << endl;
        return 0;
}

int fib(int n, vector<int>& vec)
{
        if(n <= 1)
        {
                return 1;
        }

        if(vec[n] == -1)
        {
                vec[n] = fib(n - 1, vec) + fib(n - 2, vec);
        }
        return vec[n];
}

当然,对于递归问题也可以转化为循环来解决。

代码语言:javascript
复制
#include <iostream>
#include <stdlib.h>

using namespace std;

int fib(int n);

int main(int argc, char** argv)
{
        if(argc != 2)
        {
                cout << "usage: ./a.out number" << endl;
        }

        int ret = fib(atoi(argv[1]));
        cout << "fib(" << argv[1] << ")" << " = " << ret << endl;
        return 0;
}


int fib(int n)
{
        if(n <= 1)
        {
                return 1;
        }

        int n1 = 1;
        int n2 = 1;

        for(int i = 1; i < n; ++i)
        {
                int temp = n1;
                n1 = n1 + n2;
                n2 = temp;
        }

        return n1;
}

背包问题

现在我们来看一个复杂的问题,讲动态规划必须谈到的背包问题,如果理解了此方法,那么对于同一类型的问题都可以用类似的方法来解决,学算法最重要的是学会举一反三。背包问题分为01背包问题和完全背包问题,背包问题用知乎某答主的话讲就是:一个小偷背了一个背包潜进了金店,包就那么大,他如果保证他背出来所有物品加起来的价值最大。

01背包问题的描述:有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

要说明这个问题,要先了解一下背包问题的状态转换方程: f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }

其中: f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。

初学者最不懂的地方可能就是这个状态方程了,i是什么鬼,j又是什么鬼?下面具体来说这个状态方程怎么来的。 之前说过动态规划是考虑递归的思想,要解决这个问题,首先想到解决其子问题。 要从5个中选出若干个装入容量为10的背包,可以分解为,将a物品装入背包,然后从其他四个中选出若干个装入剩余容量为8的袋子,因为a已经占去了2个位置;或者不装a,从其他四个中选出若干个装入容量为10的袋子?这两种做法中,价值最大的就是我们需要的方案。如果选择了第一种方案,那么继续分解,将b物品装入袋子,从其余三个中选出若干个装入剩余容量为6的袋子,或者不装b(也许你更乐意装b),从剩余三个中选出若干个装入剩余容量为8的袋子,选择这两种方案中价值最大的。依次类推,直到五个物品都选择完毕。将其一般化,用i代替a,用j代替10,用数学公式表达出来就是上面那个公式了,是不是觉得已经看懂了这个公式。 上面公式中还有个( j >= Wi ),表示剩余的容量至少要大于该物品的重量,才需要讨论装不装的问题。 既然子问题已经解决,那么自然想到用递归了,我们用递归来实现

代码语言:javascript
复制
#include <iostream>
#include <vector>

using namespace std;

vector<char> things = {
  
  'a', 'b', 'c', 'd', 'e'};
vector<int> value = {
  
  6, 3, 5, 4, 6};
vector<int> weight = {
  
  2, 2, 6, 5, 4};

int backpack(int n, int w)
{
    if(n == 0 | w == 0)
    {
        return 0;
    }

    int ret;

    if(w < weight[5 - n])
    {
        ret = backpack(n - 1, w);
        cout << "n = " << n << " w = " << w << " val = " << ret << endl;
        return ret;
    }

    //n表示从多少件物品中选
    //刚开始可以从五件物品中选,然后就是两种情况,放入第一件还是不放入第一件
    //第一件选择完毕后,就需要从其余四件中选择,重复上面的过程
    //
    //当n=5时,5-n表示第一件,n=4时候,5-n表示第二件
    int val1 = backpack(n - 1, w - weight[5 - n]) + value[5 - n];
    int val2 = backpack(n - 1, w);

    if(val1 > val2)
    {
        ret = val1;
        //cout << "选择物品" << things[5 - n] << endl;
    }
    else if(val1 < val2)
    {
        ret = val2;
        //cout << "不选择物品" << things[5 - n] << endl;
    }
    else
    {
        ret = val1;
        //cout << "拿不拿" << things[5 - n] << "一样" << endl;
    }

    cout << "n = " << n << " w = " << w << " val = " << ret << endl;
    return ret;
}

int main()
{
    int ret = backpack(5, 10);
    cout << "max value = " << ret << endl;
    return 0;
}
代码语言:javascript
复制
//输出结果
n = 1   w = 1   val = 0
n = 1   w = 6   val = 6
n = 2   w = 6   val = 6
n = 3   w = 6   val = 6
n = 1   w = 2   val = 0
n = 2   w = 2   val = 0
n = 1   w = 3   val = 0
n = 1   w = 8   val = 6
n = 2   w = 8   val = 6
n = 3   w = 8   val = 6
n = 4   w = 8   val = 9
n = 1   w = 2   val = 0
n = 2   w = 2   val = 0
n = 1   w = 3   val = 0
n = 1   w = 8   val = 6
n = 2   w = 8   val = 6
n = 3   w = 8   val = 6
n = 1   w = 4   val = 6
n = 2   w = 4   val = 6
n = 1   w = 5   val = 6
n = 1   w = 10   val = 6
n = 2   w = 10   val = 10
n = 3   w = 10   val = 11
n = 4   w = 10   val = 11
n = 5   w = 10   val = 15
max value = 15

递归的过程是怎样的呢?

这里写图片描述
这里写图片描述

同样出现与求斐波那契数列相同的问题,有重复计算的地方。同样的,采取用数组来保存结果,这个结果就是上面那个表,显然我们要用一个二维数组才能完成该工作。可以采取,与之前相同的方法,在递归里加数组,但是这次我们换一种方式,用循环来做。

对于用循环来解文献2采用的列表方法非常有助于理解,因此我们采用其方法来讲述,不同的是我们会将这个表生成的过程进行详细阐述。下面这个表就是文献2中用来讲述背包问题的表,大家可以先考虑一下这个表示怎么生成的。

这里写图片描述
这里写图片描述

为了便于描述,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e可以选择了,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。对于d2单元格,表示只有物品e,d可以选择时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。所以这个表列上的数字表示背包目前的容量,该行以及该行以下的物品是可以选择的,而该行以上的物品则不是该行可以选择的。这个表是从下往上、从左往右生成的。

以第4列为例分析一下生成过程:e4用公式表示就是f[1, 4] = max{(f[0, 4 – 4] + 6), f[0, 4]},对于d4用公式表示就是f[2, 4] = max{f[1, 4]}(因为容量为4的背包装不下重量为5的d物体),同理c4=f[3, 4]=max{f[2, 4]},b4 = f[4, 4] = max{(f[3, 4 – 2] + 3), f[3, 4]}

代码语言:javascript
复制
/************************************************************************/
/* 01背包问题 ** 问题描述:有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和? /************************************************************************/
#include <tchar.h>
#include <iostream>
#include <vector>
#include <string.h>
#include <cstdlib>

using namespace std;

int weight[5] = {
  
  2, 2, 6, 5, 4};   //每个物品的重量
int value[5] = {
  
  6, 3, 5, 4, 6};      //每个物品的价值
int C[6][11];   //保存各种情况能装下物品价值的数组

vector<int> path;

void FindAnswer()
{
    int capacity = 10;
    for (int i = 5; i > 0; --i)
    {
        if (C[i][capacity] > C[i - 1][capacity])
        {
            path.push_back(i);
            capacity -= weight[i - 1];
        }
    }
}

void Package()
{
    for (int i = 0; i < 11; i++)
    {
        for (int j = 0; j <6; ++j)
        {
            if (i == 0)
            {
                //可选物品为0,所以能装的价值只能为0
                C[j][i] = 0;
            }
            else if (j == 0)
            {
                //容量为零,所以能装的价值也是0
                C[j][i] = 0;
            }
            else
            {
                //判断当前容量能放入
                if (i >= weight[j - 1])
                {
                    C[j][i] =  max(C[j - 1][i], (C[j -1][i - weight[j - 1]] + value[j - 1]) );
                }
                //如果不能放入,则不放入该物品
                else
                {
                    C[j][i] = C[j - 1][i];
                }
            }           
        }
    }
}

int _tmain(int args, TCHAR* argv[])
{
    memset(C, -1, sizeof(C));
    Package();
    FindAnswer();
    return 0;
}

举一反三

动态规划来解决类似问题,大家可以试试: 硬币找零问题 金字塔最大路径问题

参考文献:

  1. http://baike.baidu.com/link?url=VaCiaDEjRqYPB433OJrlR8NluEuiKUYol1w9yGEzzzPsVkEKG9iKEIIgArEsbEmuiyJ-H12FFuFPQVJMaxbXYArPgpHx5kzfUSU48tJ4OBRhdf2_T2LAkVDAG-wx64Ad2Cl9sLVQHt3QuISVPip_Da
  2. http://blog.csdn.net/mu399/article/details/7722810

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/164396.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 动态规划的定义
  • 背包问题
  • 举一反三
  • 参考文献:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档