前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【愚公系列】2022年09月 微信小程序-three.js加载3D模型

【愚公系列】2022年09月 微信小程序-three.js加载3D模型

作者头像
愚公搬代码
发布2022-09-28 13:44:56
5.2K0
发布2022-09-28 13:44:56
举报
文章被收录于专栏:历史专栏

文章目录


前言

Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它创建各种三维场景,包括了摄影机、光影、材质等各种对象。

一个典型的 Three.js 程序至少要包括渲染器(Renderer)、场景(Scene)、照相机(Camera),以及你在场景中创建的物体。

Three.js相关文档:http://docs.thingjs.com/

在这里插入图片描述
在这里插入图片描述

一、Three.js的使用

安装第三方包:npm i --save threejs-miniprogram

1.3D模型的绘制

代码语言:javascript
复制
<view style="display:inline-block;">
  <button size="mini" type="primary" class="btn" data-action="Walking" bindtap="play">走</button>
  <button size="mini" type="primary" class="btn"  data-action="WalkJump" bindtap="play">跳</button>
  <button size="mini" type="primary" class="btn"  data-action="Sitting" bindtap="play">坐</button>
  <button size="mini" type="primary" class="btn"  data-action="Standing" bindtap="play">站</button>
</view>
<canvas
  type="webgl"
  id="webgl"
  style="width: 100%; height: 450px;"
  bindtouchstart="touchStart"
  bindtouchmove="touchMove"
  bindtouchend="touchEnd"
></canvas>
代码语言:javascript
复制
import { createScopedThreejs } from 'threejs-miniprogram'

const { renderModel } = require('../../../lib/test-cases/model')

const app = getApp()

Page({
  data: {},
  onLoad: function () {
    wx.createSelectorQuery()
      .select('#webgl')
      .node()
      .exec((res) => {
        const canvas = res[0].node
        this.canvas = canvas
        const THREE = createScopedThreejs(canvas)
        
        this.fadeToAction = renderModel(canvas, THREE)//3d model
        console.log(renderOrbit);
      })
  },
  play(e){
    let action = e.currentTarget.dataset.action
    this.fadeToAction(action)
  },
  touchStart(e) {
    this.canvas.dispatchTouchEvent({...e, type:'touchstart'})
  },
  touchMove(e) {
    this.canvas.dispatchTouchEvent({...e, type:'touchmove'})
  },
  touchEnd(e) {
    this.canvas.dispatchTouchEvent({...e, type:'touchend'})
  }
})

二、3D模型相关js文件

代码语言:javascript
复制
import { registerGLTFLoader } from '../loaders/gltf-loader'
import registerOrbit from "./orbit"

export function renderModel(canvas, THREE) {

  // glTF是一种开放格式的规范,用于更高效地传输、加载3D内容。
  // 是为了使用GLTFLoader,与下面的registerOrbit类似
  registerGLTFLoader(THREE)

  var container, stats, clock, gui, mixer, actions, activeAction, previousAction;
  var camera, scene, renderer, model, face, controls;
  var api = { state: 'Walking' };

  init();
  animate();

  function init() {

    // 创建透视相机,这一透视相机,被用来模拟人眼所看到的景象,这是3D场景渲染中使用最普遍的投影模式。
camera = new THREE.PerspectiveCamera(45, canvas.width / canvas.height, 0.25, 100);
// 设置相机位置
camera.position.set(- 5, 3, 10);
// 相机看向哪个坐标
camera.lookAt(new THREE.Vector3(0, 2, 0));

// 创建场景
// 一个放置物体、灯光和摄像机的地方。
scene = new THREE.Scene();
scene.background = new THREE.Color(0xe0e0e0);
// 雾,线性雾,雾的密度是随着距离线性增大的
scene.fog = new THREE.Fog(0xe0e0e0, 20, 100);

// Three.js时钟对象
// 是为了计时用的,相当于代替requestAnimationFrame返回时间差
clock = new THREE.Clock();

    // 创建光源
    // 半球光
    // 光源直接放置于场景之上,光照颜色从天空光线颜色,渐变到地面光线颜色。
    // 不能投射阴影。
    // skyColor : 0xffffff, groundColor : 0x444444,
var light = new THREE.HemisphereLight(0xffffff, 0x444444);
light.position.set(0, 20, 0);
scene.add(light);
// 平行光,常用平行光来模拟太阳光的效果
light = new THREE.DirectionalLight(0xffffff);
light.position.set(0, 20, 10);
scene.add(light);

    /// 构造带网格的大地辅助
    // 网格Mesh
    // 平面几何体PlaneGeometry,PlaneBufferGeometry是PlaneGeometry中的BufferGeometry接口,使用 BufferGeometry 可以有效减少向 GPU 传输上述数据所需的开销。
    // MeshPhongMaterial,一种用于具有镜面高光表面的材质。
var mesh = new THREE.Mesh(new THREE.PlaneBufferGeometry(2000, 2000), new THREE.MeshPhongMaterial({ color: 0x999999, depthWrite: false }));
mesh.rotation.x = - Math.PI / 2;
scene.add(mesh);
// 坐标格辅助对象,坐标格实际上是2维数组
var grid = new THREE.GridHelper(200, 40, 0x000000, 0x000000);
grid.material.opacity = 0.2;
grid.material.transparent = true;
scene.add(grid);

    // 创建加载器,加载模型文件
var loader = new THREE.GLTFLoader();
// .GLB 文件
// 文件类似于GLTF文件,因为它们可能包含嵌入式资源,也可能引用外部资源。如果一个.GLB 文件带有单独的资源,它们很可能是以下文件:
// 二进制(.BIN )文件-包含动画、几何图形和其他数据的一个或多个BIN文件。
// 着色器(GLSL)文件-一个或多个包含着色器的GLSL文件。
// 图像(.JPG 、.PNG 等)文件-包含三维模型纹理的一个或多个文件。

loader.load('https://threejs.org/examples/models/gltf/RobotExpressive/RobotExpressive.glb', function (gltf) {
  // gltf.animations; // Array
  // gltf.scene; // THREE.Group
  // gltf.scenes; // Array
  // gltf.cameras; // Array
  // gltf.asset; // Object  
  model = gltf.scene;//三维物体的组
  scene.add(model);
  // 
  createGUI(model, gltf.animations)
}, undefined, function (e) {
  console.error(e);
});

    // 创建渲染器,渲染场景
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(wx.getSystemInfoSync().pixelRatio);
renderer.setSize(canvas.width, canvas.height);
renderer.gammaOutput = true;
renderer.gammaFactor = 2.2;

    // 创建控制器
    // Orbit controls,轨道控制器,可以使得相机围绕目标进行轨道运动
    // 表现就是可以使用鼠标或手指旋转物体
    // 在外部需要事件配合传入
    // registerOrbit是为了使用轨道控制器
const { OrbitControls } = registerOrbit(THREE)
controls = new OrbitControls( camera, renderer.domElement );

    camera.position.set( 5, 5, 10 );
    controls.update();
  }

  // 创建混合器
  // 处理动作
function createGUI(model, animations) {
  var states = ['Idle', 'Walking', 'Running', 'Dance', 'Death', 'Sitting', 'Standing'];
  var emotes = ['Jump', 'Yes', 'No', 'Wave', 'Punch', 'ThumbsUp'];
  // 创建帧动画混合器对象AnimationMixer,主要用于播放帧动画,可以播放所有子对象所绑定的帧动画,
  // 执行混合器对象AnimationMixer的方法.clipAction(clip)把包含关键帧数据的剪辑对象AnimationClip作为参数,会返回一个帧动画操作对象AnimationAction,通过AnimationAction对象的方法.play()可以播放帧动画。
  mixer = new THREE.AnimationMixer(model);
  actions = {};
  for (var i = 0; i < animations.length; i++) {
    var clip = animations[i];
// 取出帧动画操作对象AnimationAction,以备播放用
    var action = mixer.clipAction(clip);
    actions[clip.name] = action;
    // 
    if (emotes.indexOf(clip.name) >= 0 || states.indexOf(clip.name) >= 4) {
      // 暂停在最后一帧播放的状态
      action.clampWhenFinished = true;
      // 不循环播放
      action.loop = THREE.LoopOnce;
    }
    console.log('clip.name',clip.name);
    
  }
  // expressions
  // 检索对象的子类对象,然后返回第一个匹配到name的
  // 没有用到
  face = model.getObjectByName('Head_2');

  // 默认的动作
  activeAction = actions['WalkJump'];
  activeAction.play();
}

// 平滑切换动作
function fadeToAction(name, duration = 1) {
  previousAction = activeAction;
  
  activeAction = actions[name];
  if (previousAction !== activeAction) {
    previousAction.fadeOut(duration);
  }
  // 链式调用
  // TimeScale是时间的比例因子. 值为0时会使动画暂停。值为负数时动画会反向执行。默认值是1。
  // weight,动作的影响程度,取值范围[0, 1]。0 =无影响,1=完全影响,之间的值可以用来混合多个动作。默认值是1
  activeAction
    .reset()
    .setEffectiveTimeScale(1)//设置时间比例(timeScale)以及停用所有的变形
    .setEffectiveWeight(1)//设置权重weight,以及停止所有淡入淡出
    .fadeIn(duration)//在传入的时间间隔内,逐渐将此动作的权重weight,由0升到1
    .play();//让混合器激活动作
  }

  // 循环渲染场景
function animate() {
  // 简单说.getDelta ()方法的功能就是获得前后两次执行该方法的时间间隔
  // 返回间隔时间单位是秒
  var dt = clock.getDelta();
  if (mixer) mixer.update(dt);//更新混合器,是动画关键
  canvas.requestAnimationFrame(animate);
  controls.update()
  renderer.render(scene, camera);
}

  return fadeToAction
}
代码语言:javascript
复制
export function registerGLTFLoader(THREE) {

  /**
 * @author Rich Tibbett / https://github.com/richtr
 * @author mrdoob / http://mrdoob.com/
 * @author Tony Parisi / http://www.tonyparisi.com/
 * @author Takahiro / https://github.com/takahirox
 * @author Don McCurdy / https://www.donmccurdy.com
 */

  THREE.GLTFLoader = (function () {

    function GLTFLoader(manager) {

      this.manager = (manager !== undefined) ? manager : THREE.DefaultLoadingManager;
      this.dracoLoader = null;
      this.ddsLoader = null;

    }

    GLTFLoader.prototype = {

      constructor: GLTFLoader,

      crossOrigin: 'anonymous',

      load: function (url, onLoad, onProgress, onError) {

        var scope = this;

        var resourcePath;

        if (this.resourcePath !== undefined) {

          resourcePath = this.resourcePath;

        } else if (this.path !== undefined) {

          resourcePath = this.path;

        } else {

          resourcePath = THREE.LoaderUtils.extractUrlBase(url);

        }

        // Tells the LoadingManager to track an extra item, which resolves after
        // the model is fully loaded. This means the count of items loaded will
        // be incorrect, but ensures manager.onLoad() does not fire early.
        scope.manager.itemStart(url);

        var _onError = function (e) {

          if (onError) {

            onError(e);

          } else {

            console.error(e);

          }

          scope.manager.itemError(url);
          scope.manager.itemEnd(url);

        };

        var loader = new THREE.FileLoader(scope.manager);

        loader.setPath(this.path);
        loader.setResponseType('arraybuffer');

        if (scope.crossOrigin === 'use-credentials') {

          loader.setWithCredentials(true);

        }

        loader.load(url, function (data) {

          try {

            scope.parse(data, resourcePath, function (gltf) {

              onLoad(gltf);

              scope.manager.itemEnd(url);

            }, _onError);

          } catch (e) {

            _onError(e);

          }

        }, onProgress, _onError);

      },

      setCrossOrigin: function (value) {

        this.crossOrigin = value;
        return this;

      },

      setPath: function (value) {

        this.path = value;
        return this;

      },

      setResourcePath: function (value) {

        this.resourcePath = value;
        return this;

      },

      setDRACOLoader: function (dracoLoader) {

        this.dracoLoader = dracoLoader;
        return this;

      },

      setDDSLoader: function (ddsLoader) {

        this.ddsLoader = ddsLoader;
        return this;

      },

      parse: function (data, path, onLoad, onError) {

        var content;
        var extensions = {};

        if (typeof data === 'string') {

          content = data;

        } else {

          var magic = THREE.LoaderUtils.decodeText(new Uint8Array(data, 0, 4));

          if (magic === BINARY_EXTENSION_HEADER_MAGIC) {

            try {

              extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data);

            } catch (error) {

              if (onError) onError(error);
              return;

            }

            content = extensions[EXTENSIONS.KHR_BINARY_GLTF].content;

          } else {

            content = THREE.LoaderUtils.decodeText(new Uint8Array(data));

          }

        }

        var json = JSON.parse(content);

        if (json.asset === undefined || json.asset.version[0] < 2) {

          if (onError) onError(new Error('THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.'));
          return;

        }

        if (json.extensionsUsed) {

          for (var i = 0; i < json.extensionsUsed.length; ++i) {

            var extensionName = json.extensionsUsed[i];
            var extensionsRequired = json.extensionsRequired || [];

            switch (extensionName) {

              case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
                extensions[extensionName] = new GLTFLightsExtension(json);
                break;

              case EXTENSIONS.KHR_MATERIALS_UNLIT:
                extensions[extensionName] = new GLTFMaterialsUnlitExtension();
                break;

              case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
                extensions[extensionName] = new GLTFMaterialsPbrSpecularGlossinessExtension();
                break;

              case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
                extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader);
                break;

              case EXTENSIONS.MSFT_TEXTURE_DDS:
                extensions[EXTENSIONS.MSFT_TEXTURE_DDS] = new GLTFTextureDDSExtension(this.ddsLoader);
                break;

              case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
                extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] = new GLTFTextureTransformExtension();
                break;

              default:

                if (extensionsRequired.indexOf(extensionName) >= 0) {

                  console.warn('THREE.GLTFLoader: Unknown extension "' + extensionName + '".');

                }

            }

          }

        }

        var parser = new GLTFParser(json, extensions, {

          path: path || this.resourcePath || '',
          crossOrigin: this.crossOrigin,
          manager: this.manager

        });

        parser.parse(onLoad, onError);

      }

    };

    /* GLTFREGISTRY */

    function GLTFRegistry() {

      var objects = {};

      return {

        get: function (key) {

          return objects[key];

        },

        add: function (key, object) {

          objects[key] = object;

        },

        remove: function (key) {

          delete objects[key];

        },

        removeAll: function () {

          objects = {};

        }

      };

    }

    /*********************************/
    /********** EXTENSIONS ***********/
    /*********************************/

    var EXTENSIONS = {
      KHR_BINARY_GLTF: 'KHR_binary_glTF',
      KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
      KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
      KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
      KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
      KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
      MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
    };

    /**
     * DDS Texture Extension
     *
     * Specification:
     * https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
     *
     */
    function GLTFTextureDDSExtension(ddsLoader) {

      if (!ddsLoader) {

        throw new Error('THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader');

      }

      this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
      this.ddsLoader = ddsLoader;

    }

    /**
     * Lights Extension
     *
     * Specification: PENDING
     */
    function GLTFLightsExtension(json) {

      this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;

      var extension = (json.extensions && json.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL]) || {};
      this.lightDefs = extension.lights || [];

    }

    GLTFLightsExtension.prototype.loadLight = function (lightIndex) {

      var lightDef = this.lightDefs[lightIndex];
      var lightNode;

      var color = new THREE.Color(0xffffff);
      if (lightDef.color !== undefined) color.fromArray(lightDef.color);

      var range = lightDef.range !== undefined ? lightDef.range : 0;

      switch (lightDef.type) {

        case 'directional':
          lightNode = new THREE.DirectionalLight(color);
          lightNode.target.position.set(0, 0, - 1);
          lightNode.add(lightNode.target);
          break;

        case 'point':
          lightNode = new THREE.PointLight(color);
          lightNode.distance = range;
          break;

        case 'spot':
          lightNode = new THREE.SpotLight(color);
          lightNode.distance = range;
          // Handle spotlight properties.
          lightDef.spot = lightDef.spot || {};
          lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
          lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
          lightNode.angle = lightDef.spot.outerConeAngle;
          lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
          lightNode.target.position.set(0, 0, - 1);
          lightNode.add(lightNode.target);
          break;

        default:
          throw new Error('THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".');

      }

      // Some lights (e.g. spot) default to a position other than the origin. Reset the position
      // here, because node-level parsing will only override position if explicitly specified.
      lightNode.position.set(0, 0, 0);

      lightNode.decay = 2;

      if (lightDef.intensity !== undefined) lightNode.intensity = lightDef.intensity;

      lightNode.name = lightDef.name || ('light_' + lightIndex);

      return Promise.resolve(lightNode);

    };

    /**
     * Unlit Materials Extension (pending)
     *
     * PR: https://github.com/KhronosGroup/glTF/pull/1163
     */
    function GLTFMaterialsUnlitExtension() {

      this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;

    }

    GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () {

      return THREE.MeshBasicMaterial;

    };

    GLTFMaterialsUnlitExtension.prototype.extendParams = function (materialParams, materialDef, parser) {

      var pending = [];

      materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
      materialParams.opacity = 1.0;

      var metallicRoughness = materialDef.pbrMetallicRoughness;

      if (metallicRoughness) {

        if (Array.isArray(metallicRoughness.baseColorFactor)) {

          var array = metallicRoughness.baseColorFactor;

          materialParams.color.fromArray(array);
          materialParams.opacity = array[3];

        }

        if (metallicRoughness.baseColorTexture !== undefined) {

          pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture));

        }

      }

      return Promise.all(pending);

    };

    /* BINARY EXTENSION */
    var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
    var BINARY_EXTENSION_HEADER_LENGTH = 12;
    var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };

    function GLTFBinaryExtension(data) {

      this.name = EXTENSIONS.KHR_BINARY_GLTF;
      this.content = null;
      this.body = null;

      var headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH);

      this.header = {
        magic: THREE.LoaderUtils.decodeText(new Uint8Array(data.slice(0, 4))),
        version: headerView.getUint32(4, true),
        length: headerView.getUint32(8, true)
      };

      if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) {

        throw new Error('THREE.GLTFLoader: Unsupported glTF-Binary header.');

      } else if (this.header.version < 2.0) {

        throw new Error('THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.');

      }

      var chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH);
      var chunkIndex = 0;

      while (chunkIndex < chunkView.byteLength) {

        var chunkLength = chunkView.getUint32(chunkIndex, true);
        chunkIndex += 4;

        var chunkType = chunkView.getUint32(chunkIndex, true);
        chunkIndex += 4;

        if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) {

          var contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength);
          this.content = THREE.LoaderUtils.decodeText(contentArray);

        } else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) {

          var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
          this.body = data.slice(byteOffset, byteOffset + chunkLength);

        }

        // Clients must ignore chunks with unknown types.

        chunkIndex += chunkLength;

      }

      if (this.content === null) {

        throw new Error('THREE.GLTFLoader: JSON content not found.');

      }

    }

    /**
     * DRACO Mesh Compression Extension
     *
     * Specification: https://github.com/KhronosGroup/glTF/pull/874
     */
    function GLTFDracoMeshCompressionExtension(json, dracoLoader) {

      if (!dracoLoader) {

        throw new Error('THREE.GLTFLoader: No DRACOLoader instance provided.');

      }

      this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
      this.json = json;
      this.dracoLoader = dracoLoader;

    }

    GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function (primitive, parser) {

      var json = this.json;
      var dracoLoader = this.dracoLoader;
      var bufferViewIndex = primitive.extensions[this.name].bufferView;
      var gltfAttributeMap = primitive.extensions[this.name].attributes;
      var threeAttributeMap = {};
      var attributeNormalizedMap = {};
      var attributeTypeMap = {};

      for (var attributeName in gltfAttributeMap) {

        var threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase();

        threeAttributeMap[threeAttributeName] = gltfAttributeMap[attributeName];

      }

      for (attributeName in primitive.attributes) {

        var threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase();

        if (gltfAttributeMap[attributeName] !== undefined) {

          var accessorDef = json.accessors[primitive.attributes[attributeName]];
          var componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType];

          attributeTypeMap[threeAttributeName] = componentType;
          attributeNormalizedMap[threeAttributeName] = accessorDef.normalized === true;

        }

      }

      return parser.getDependency('bufferView', bufferViewIndex).then(function (bufferView) {

        return new Promise(function (resolve) {

          dracoLoader.decodeDracoFile(bufferView, function (geometry) {

            for (var attributeName in geometry.attributes) {

              var attribute = geometry.attributes[attributeName];
              var normalized = attributeNormalizedMap[attributeName];

              if (normalized !== undefined) attribute.normalized = normalized;

            }

            resolve(geometry);

          }, threeAttributeMap, attributeTypeMap);

        });

      });

    };

    /**
     * Texture Transform Extension
     *
     * Specification:
     */
    function GLTFTextureTransformExtension() {

      this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;

    }

    GLTFTextureTransformExtension.prototype.extendTexture = function (texture, transform) {

      texture = texture.clone();

      if (transform.offset !== undefined) {

        texture.offset.fromArray(transform.offset);

      }

      if (transform.rotation !== undefined) {

        texture.rotation = transform.rotation;

      }

      if (transform.scale !== undefined) {

        texture.repeat.fromArray(transform.scale);

      }

      if (transform.texCoord !== undefined) {

        console.warn('THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.');

      }

      texture.needsUpdate = true;

      return texture;

    };

    /**
     * Specular-Glossiness Extension
     *
     * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
     */
    function GLTFMaterialsPbrSpecularGlossinessExtension() {

      return {

        name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,

        specularGlossinessParams: [
          'color',
          'map',
          'lightMap',
          'lightMapIntensity',
          'aoMap',
          'aoMapIntensity',
          'emissive',
          'emissiveIntensity',
          'emissiveMap',
          'bumpMap',
          'bumpScale',
          'normalMap',
          'displacementMap',
          'displacementScale',
          'displacementBias',
          'specularMap',
          'specular',
          'glossinessMap',
          'glossiness',
          'alphaMap',
          'envMap',
          'envMapIntensity',
          'refractionRatio',
        ],

        getMaterialType: function () {

          return THREE.ShaderMaterial;

        },

        extendParams: function (materialParams, materialDef, parser) {

          var pbrSpecularGlossiness = materialDef.extensions[this.name];

          var shader = THREE.ShaderLib['standard'];

          var uniforms = THREE.UniformsUtils.clone(shader.uniforms);

          var specularMapParsFragmentChunk = [
            '#ifdef USE_SPECULARMAP',
            '	uniform sampler2D specularMap;',
            '#endif'
          ].join('\n');

          var glossinessMapParsFragmentChunk = [
            '#ifdef USE_GLOSSINESSMAP',
            '	uniform sampler2D glossinessMap;',
            '#endif'
          ].join('\n');

          var specularMapFragmentChunk = [
            'vec3 specularFactor = specular;',
            '#ifdef USE_SPECULARMAP',
            '	vec4 texelSpecular = texture2D( specularMap, vUv );',
            '	texelSpecular = sRGBToLinear( texelSpecular );',
            '	// reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
            '	specularFactor *= texelSpecular.rgb;',
            '#endif'
          ].join('\n');

          var glossinessMapFragmentChunk = [
            'float glossinessFactor = glossiness;',
            '#ifdef USE_GLOSSINESSMAP',
            '	vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
            '	// reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
            '	glossinessFactor *= texelGlossiness.a;',
            '#endif'
          ].join('\n');

          var lightPhysicalFragmentChunk = [
            'PhysicalMaterial material;',
            'material.diffuseColor = diffuseColor.rgb;',
            'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );',
            'material.specularColor = specularFactor.rgb;',
          ].join('\n');

          var fragmentShader = shader.fragmentShader
            .replace('uniform float roughness;', 'uniform vec3 specular;')
            .replace('uniform float metalness;', 'uniform float glossiness;')
            .replace('#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk)
            .replace('#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk)
            .replace('#include <roughnessmap_fragment>', specularMapFragmentChunk)
            .replace('#include <metalnessmap_fragment>', glossinessMapFragmentChunk)
            .replace('#include <lights_physical_fragment>', lightPhysicalFragmentChunk);

          delete uniforms.roughness;
          delete uniforms.metalness;
          delete uniforms.roughnessMap;
          delete uniforms.metalnessMap;

          uniforms.specular = { value: new THREE.Color().setHex(0x111111) };
          uniforms.glossiness = { value: 0.5 };
          uniforms.specularMap = { value: null };
          uniforms.glossinessMap = { value: null };

          materialParams.vertexShader = shader.vertexShader;
          materialParams.fragmentShader = fragmentShader;
          materialParams.uniforms = uniforms;
          materialParams.defines = { 'STANDARD': '' }

          materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
          materialParams.opacity = 1.0;

          var pending = [];

          if (Array.isArray(pbrSpecularGlossiness.diffuseFactor)) {

            var array = pbrSpecularGlossiness.diffuseFactor;

            materialParams.color.fromArray(array);
            materialParams.opacity = array[3];

          }

          if (pbrSpecularGlossiness.diffuseTexture !== undefined) {

            pending.push(parser.assignTexture(materialParams, 'map', pbrSpecularGlossiness.diffuseTexture));

          }

          materialParams.emissive = new THREE.Color(0.0, 0.0, 0.0);
          materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
          materialParams.specular = new THREE.Color(1.0, 1.0, 1.0);

          if (Array.isArray(pbrSpecularGlossiness.specularFactor)) {

            materialParams.specular.fromArray(pbrSpecularGlossiness.specularFactor);

          }

          if (pbrSpecularGlossiness.specularGlossinessTexture !== undefined) {

            var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
            pending.push(parser.assignTexture(materialParams, 'glossinessMap', specGlossMapDef));
            pending.push(parser.assignTexture(materialParams, 'specularMap', specGlossMapDef));

          }

          return Promise.all(pending);

        },

        createMaterial: function (params) {

          // setup material properties based on MeshStandardMaterial for Specular-Glossiness

          var material = new THREE.ShaderMaterial({
            defines: params.defines,
            vertexShader: params.vertexShader,
            fragmentShader: params.fragmentShader,
            uniforms: params.uniforms,
            fog: true,
            lights: true,
            opacity: params.opacity,
            transparent: params.transparent
          });

          material.isGLTFSpecularGlossinessMaterial = true;

          material.color = params.color;

          material.map = params.map === undefined ? null : params.map;

          material.lightMap = null;
          material.lightMapIntensity = 1.0;

          material.aoMap = params.aoMap === undefined ? null : params.aoMap;
          material.aoMapIntensity = 1.0;

          material.emissive = params.emissive;
          material.emissiveIntensity = 1.0;
          material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap;

          material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap;
          material.bumpScale = 1;

          material.normalMap = params.normalMap === undefined ? null : params.normalMap;

          if (params.normalScale) material.normalScale = params.normalScale;

          material.displacementMap = null;
          material.displacementScale = 1;
          material.displacementBias = 0;

          material.specularMap = params.specularMap === undefined ? null : params.specularMap;
          material.specular = params.specular;

          material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap;
          material.glossiness = params.glossiness;

          material.alphaMap = null;

          material.envMap = params.envMap === undefined ? null : params.envMap;
          material.envMapIntensity = 1.0;

          material.refractionRatio = 0.98;

          material.extensions.derivatives = true;

          return material;

        },

        /**
         * Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can
         * copy only properties it knows about or inherits, and misses many properties that would
         * normally be defined by MeshStandardMaterial.
         *
         * This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of
         * loading a glTF model, but cloning later (e.g. by the user) would require these changes
         * AND also updating `.onBeforeRender` on the parent mesh.
         *
         * @param  {THREE.ShaderMaterial} source
         * @return {THREE.ShaderMaterial}
         */
        cloneMaterial: function (source) {

          var target = source.clone();

          target.isGLTFSpecularGlossinessMaterial = true;

          var params = this.specularGlossinessParams;

          for (var i = 0, il = params.length; i < il; i++) {

            var value = source[params[i]];
            target[params[i]] = (value && value.isColor) ? value.clone() : value;

          }

          return target;

        },

        // Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer.
        refreshUniforms: function (renderer, scene, camera, geometry, material) {

          if (material.isGLTFSpecularGlossinessMaterial !== true) {

            return;

          }

          var uniforms = material.uniforms;
          var defines = material.defines;

          uniforms.opacity.value = material.opacity;

          uniforms.diffuse.value.copy(material.color);
          uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);

          uniforms.map.value = material.map;
          uniforms.specularMap.value = material.specularMap;
          uniforms.alphaMap.value = material.alphaMap;

          uniforms.lightMap.value = material.lightMap;
          uniforms.lightMapIntensity.value = material.lightMapIntensity;

          uniforms.aoMap.value = material.aoMap;
          uniforms.aoMapIntensity.value = material.aoMapIntensity;

          // uv repeat and offset setting priorities
          // 1. color map
          // 2. specular map
          // 3. normal map
          // 4. bump map
          // 5. alpha map
          // 6. emissive map

          var uvScaleMap;

          if (material.map) {

            uvScaleMap = material.map;

          } else if (material.specularMap) {

            uvScaleMap = material.specularMap;

          } else if (material.displacementMap) {

            uvScaleMap = material.displacementMap;

          } else if (material.normalMap) {

            uvScaleMap = material.normalMap;

          } else if (material.bumpMap) {

            uvScaleMap = material.bumpMap;

          } else if (material.glossinessMap) {

            uvScaleMap = material.glossinessMap;

          } else if (material.alphaMap) {

            uvScaleMap = material.alphaMap;

          } else if (material.emissiveMap) {

            uvScaleMap = material.emissiveMap;

          }

          if (uvScaleMap !== undefined) {

            // backwards compatibility
            if (uvScaleMap.isWebGLRenderTarget) {

              uvScaleMap = uvScaleMap.texture;

            }

            if (uvScaleMap.matrixAutoUpdate === true) {

              uvScaleMap.updateMatrix();

            }

            uniforms.uvTransform.value.copy(uvScaleMap.matrix);

          }

          if (material.envMap) {

            uniforms.envMap.value = material.envMap;
            uniforms.envMapIntensity.value = material.envMapIntensity;

            // don't flip CubeTexture envMaps, flip everything else:
            //  WebGLRenderTargetCube will be flipped for backwards compatibility
            //  WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
            // this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
            uniforms.flipEnvMap.value = material.envMap.isCubeTexture ? - 1 : 1;

            uniforms.reflectivity.value = material.reflectivity;
            uniforms.refractionRatio.value = material.refractionRatio;

            uniforms.maxMipLevel.value = renderer.properties.get(material.envMap).__maxMipLevel;

          }

          uniforms.specular.value.copy(material.specular);
          uniforms.glossiness.value = material.glossiness;

          uniforms.glossinessMap.value = material.glossinessMap;

          uniforms.emissiveMap.value = material.emissiveMap;
          uniforms.bumpMap.value = material.bumpMap;
          uniforms.normalMap.value = material.normalMap;

          uniforms.displacementMap.value = material.displacementMap;
          uniforms.displacementScale.value = material.displacementScale;
          uniforms.displacementBias.value = material.displacementBias;

          if (uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined) {

            defines.USE_GLOSSINESSMAP = '';
            // set USE_ROUGHNESSMAP to enable vUv
            defines.USE_ROUGHNESSMAP = '';

          }

          if (uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined) {

            delete defines.USE_GLOSSINESSMAP;
            delete defines.USE_ROUGHNESSMAP;

          }

        }

      };

    }

    /*********************************/
    /********** INTERPOLATION ********/
    /*********************************/

    // Spline Interpolation
    // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
    function GLTFCubicSplineInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {

      THREE.Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer);

    }

    GLTFCubicSplineInterpolant.prototype = Object.create(THREE.Interpolant.prototype);
    GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;

    GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function (index) {

      // Copies a sample value to the result buffer. See description of glTF
      // CUBICSPLINE values layout in interpolate_() function below.

      var result = this.resultBuffer,
        values = this.sampleValues,
        valueSize = this.valueSize,
        offset = index * valueSize * 3 + valueSize;

      for (var i = 0; i !== valueSize; i++) {

        result[i] = values[offset + i];

      }

      return result;

    };

    GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

    GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

    GLTFCubicSplineInterpolant.prototype.interpolate_ = function (i1, t0, t, t1) {

      var result = this.resultBuffer;
      var values = this.sampleValues;
      var stride = this.valueSize;

      var stride2 = stride * 2;
      var stride3 = stride * 3;

      var td = t1 - t0;

      var p = (t - t0) / td;
      var pp = p * p;
      var ppp = pp * p;

      var offset1 = i1 * stride3;
      var offset0 = offset1 - stride3;

      var s2 = - 2 * ppp + 3 * pp;
      var s3 = ppp - pp;
      var s0 = 1 - s2;
      var s1 = s3 - pp + p;

      // Layout of keyframe output values for CUBICSPLINE animations:
      //   [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
      for (var i = 0; i !== stride; i++) {

        var p0 = values[offset0 + i + stride]; // splineVertex_k
        var m0 = values[offset0 + i + stride2] * td; // outTangent_k * (t_k+1 - t_k)
        var p1 = values[offset1 + i + stride]; // splineVertex_k+1
        var m1 = values[offset1 + i] * td; // inTangent_k+1 * (t_k+1 - t_k)

        result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;

      }

      return result;

    };

    /*********************************/
    /********** INTERNALS ************/
    /*********************************/

    /* CONSTANTS */

    var WEBGL_CONSTANTS = {
      FLOAT: 5126,
      //FLOAT_MAT2: 35674,
      FLOAT_MAT3: 35675,
      FLOAT_MAT4: 35676,
      FLOAT_VEC2: 35664,
      FLOAT_VEC3: 35665,
      FLOAT_VEC4: 35666,
      LINEAR: 9729,
      REPEAT: 10497,
      SAMPLER_2D: 35678,
      POINTS: 0,
      LINES: 1,
      LINE_LOOP: 2,
      LINE_STRIP: 3,
      TRIANGLES: 4,
      TRIANGLE_STRIP: 5,
      TRIANGLE_FAN: 6,
      UNSIGNED_BYTE: 5121,
      UNSIGNED_SHORT: 5123
    };

    var WEBGL_COMPONENT_TYPES = {
      5120: Int8Array,
      5121: Uint8Array,
      5122: Int16Array,
      5123: Uint16Array,
      5125: Uint32Array,
      5126: Float32Array
    };

    var WEBGL_FILTERS = {
      9728: THREE.NearestFilter,
      9729: THREE.LinearFilter,
      9984: THREE.NearestMipmapNearestFilter,
      9985: THREE.LinearMipmapNearestFilter,
      9986: THREE.NearestMipmapLinearFilter,
      9987: THREE.LinearMipmapLinearFilter
    };

    var WEBGL_WRAPPINGS = {
      33071: THREE.ClampToEdgeWrapping,
      33648: THREE.MirroredRepeatWrapping,
      10497: THREE.RepeatWrapping
    };

    var WEBGL_TYPE_SIZES = {
      'SCALAR': 1,
      'VEC2': 2,
      'VEC3': 3,
      'VEC4': 4,
      'MAT2': 4,
      'MAT3': 9,
      'MAT4': 16
    };

    var ATTRIBUTES = {
      POSITION: 'position',
      NORMAL: 'normal',
      TANGENT: 'tangent',
      TEXCOORD_0: 'uv',
      TEXCOORD_1: 'uv2',
      COLOR_0: 'color',
      WEIGHTS_0: 'skinWeight',
      JOINTS_0: 'skinIndex',
    };

    var PATH_PROPERTIES = {
      scale: 'scale',
      translation: 'position',
      rotation: 'quaternion',
      weights: 'morphTargetInfluences'
    };

    var INTERPOLATION = {
      CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
      // keyframe track will be initialized with a default interpolation type, then modified.
      LINEAR: THREE.InterpolateLinear,
      STEP: THREE.InterpolateDiscrete
    };

    var ALPHA_MODES = {
      OPAQUE: 'OPAQUE',
      MASK: 'MASK',
      BLEND: 'BLEND'
    };

    var MIME_TYPE_FORMATS = {
      'image/png': THREE.RGBAFormat,
      'image/jpeg': THREE.RGBFormat
    };

    /* UTILITY FUNCTIONS */

    function resolveURL(url, path) {

      // Invalid URL
      if (typeof url !== 'string' || url === '') return '';

      // Host Relative URL
      if (/^https?:\/\//i.test(path) && /^\//.test(url)) {

        path = path.replace(/(^https?:\/\/[^\/]+).*/i, '$1');

      }

      // Absolute URL http://,https://,//
      if (/^(https?:)?\/\//i.test(url)) return url;

      // Data URI
      if (/^data:.*,.*$/i.test(url)) return url;

      // Blob URL
      if (/^blob:.*$/i.test(url)) return url;

      // Relative URL
      return path + url;

    }

    var defaultMaterial;

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
     */
    function createDefaultMaterial() {

      defaultMaterial = defaultMaterial || new THREE.MeshStandardMaterial({
        color: 0xFFFFFF,
        emissive: 0x000000,
        metalness: 1,
        roughness: 1,
        transparent: false,
        depthTest: true,
        side: THREE.FrontSide
      });

      return defaultMaterial;

    }

    function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) {

      // Add unknown glTF extensions to an object's userData.

      for (var name in objectDef.extensions) {

        if (knownExtensions[name] === undefined) {

          object.userData.gltfExtensions = object.userData.gltfExtensions || {};
          object.userData.gltfExtensions[name] = objectDef.extensions[name];

        }

      }

    }

    /**
     * @param {THREE.Object3D|THREE.Material|THREE.BufferGeometry} object
     * @param {GLTF.definition} gltfDef
     */
    function assignExtrasToUserData(object, gltfDef) {

      if (gltfDef.extras !== undefined) {

        if (typeof gltfDef.extras === 'object') {

          Object.assign(object.userData, gltfDef.extras);

        } else {

          console.warn('THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras);

        }

      }

    }

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
     *
     * @param {THREE.BufferGeometry} geometry
     * @param {Array} targets
     * @param {GLTFParser} parser
     * @return {Promise}
     */
    function addMorphTargets(geometry, targets, parser) {

      var hasMorphPosition = false;
      var hasMorphNormal = false;

      for (var i = 0, il = targets.length; i < il; i++) {

        var target = targets[i];

        if (target.POSITION !== undefined) hasMorphPosition = true;
        if (target.NORMAL !== undefined) hasMorphNormal = true;

        if (hasMorphPosition && hasMorphNormal) break;

      }

      if (!hasMorphPosition && !hasMorphNormal) return Promise.resolve(geometry);

      var pendingPositionAccessors = [];
      var pendingNormalAccessors = [];

      for (var i = 0, il = targets.length; i < il; i++) {

        var target = targets[i];

        if (hasMorphPosition) {

          var pendingAccessor = target.POSITION !== undefined
            ? parser.getDependency('accessor', target.POSITION)
            : geometry.attributes.position;

          pendingPositionAccessors.push(pendingAccessor);

        }

        if (hasMorphNormal) {

          var pendingAccessor = target.NORMAL !== undefined
            ? parser.getDependency('accessor', target.NORMAL)
            : geometry.attributes.normal;

          pendingNormalAccessors.push(pendingAccessor);

        }

      }

      return Promise.all([
        Promise.all(pendingPositionAccessors),
        Promise.all(pendingNormalAccessors)
      ]).then(function (accessors) {

        var morphPositions = accessors[0];
        var morphNormals = accessors[1];

        // Clone morph target accessors before modifying them.

        for (var i = 0, il = morphPositions.length; i < il; i++) {

          if (geometry.attributes.position === morphPositions[i]) continue;

          morphPositions[i] = cloneBufferAttribute(morphPositions[i]);

        }

        for (var i = 0, il = morphNormals.length; i < il; i++) {

          if (geometry.attributes.normal === morphNormals[i]) continue;

          morphNormals[i] = cloneBufferAttribute(morphNormals[i]);

        }

        for (var i = 0, il = targets.length; i < il; i++) {

          var target = targets[i];
          var attributeName = 'morphTarget' + i;

          if (hasMorphPosition) {

            // Three.js morph position is absolute value. The formula is
            //   basePosition
            //     + weight0 * ( morphPosition0 - basePosition )
            //     + weight1 * ( morphPosition1 - basePosition )
            //     ...
            // while the glTF one is relative
            //   basePosition
            //     + weight0 * glTFmorphPosition0
            //     + weight1 * glTFmorphPosition1
            //     ...
            // then we need to convert from relative to absolute here.

            if (target.POSITION !== undefined) {

              var positionAttribute = morphPositions[i];
              positionAttribute.name = attributeName;

              var position = geometry.attributes.position;

              for (var j = 0, jl = positionAttribute.count; j < jl; j++) {

                positionAttribute.setXYZ(
                  j,
                  positionAttribute.getX(j) + position.getX(j),
                  positionAttribute.getY(j) + position.getY(j),
                  positionAttribute.getZ(j) + position.getZ(j)
                );

              }

            }

          }

          if (hasMorphNormal) {

            // see target.POSITION's comment

            if (target.NORMAL !== undefined) {

              var normalAttribute = morphNormals[i];
              normalAttribute.name = attributeName;

              var normal = geometry.attributes.normal;

              for (var j = 0, jl = normalAttribute.count; j < jl; j++) {

                normalAttribute.setXYZ(
                  j,
                  normalAttribute.getX(j) + normal.getX(j),
                  normalAttribute.getY(j) + normal.getY(j),
                  normalAttribute.getZ(j) + normal.getZ(j)
                );

              }

            }

          }

        }

        if (hasMorphPosition) geometry.morphAttributes.position = morphPositions;
        if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals;

        return geometry;

      });

    }

    /**
     * @param {THREE.Mesh} mesh
     * @param {GLTF.Mesh} meshDef
     */
    function updateMorphTargets(mesh, meshDef) {

      mesh.updateMorphTargets();

      if (meshDef.weights !== undefined) {

        for (var i = 0, il = meshDef.weights.length; i < il; i++) {

          mesh.morphTargetInfluences[i] = meshDef.weights[i];

        }

      }

      // .extras has user-defined data, so check that .extras.targetNames is an array.
      if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) {

        var targetNames = meshDef.extras.targetNames;

        if (mesh.morphTargetInfluences.length === targetNames.length) {

          mesh.morphTargetDictionary = {};

          for (var i = 0, il = targetNames.length; i < il; i++) {

            mesh.morphTargetDictionary[targetNames[i]] = i;

          }

        } else {

          console.warn('THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.');

        }

      }

    }

    function createPrimitiveKey(primitiveDef) {

      var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION];
      var geometryKey;

      if (dracoExtension) {

        geometryKey = 'draco:' + dracoExtension.bufferView
          + ':' + dracoExtension.indices
          + ':' + createAttributesKey(dracoExtension.attributes);

      } else {

        geometryKey = primitiveDef.indices + ':' + createAttributesKey(primitiveDef.attributes) + ':' + primitiveDef.mode;

      }

      return geometryKey;

    }

    function createAttributesKey(attributes) {

      var attributesKey = '';

      var keys = Object.keys(attributes).sort();

      for (var i = 0, il = keys.length; i < il; i++) {

        attributesKey += keys[i] + ':' + attributes[keys[i]] + ';';

      }

      return attributesKey;

    }

    function cloneBufferAttribute(attribute) {

      if (attribute.isInterleavedBufferAttribute) {

        var count = attribute.count;
        var itemSize = attribute.itemSize;
        var array = attribute.array.slice(0, count * itemSize);

        for (var i = 0, j = 0; i < count; ++i) {

          array[j++] = attribute.getX(i);
          if (itemSize >= 2) array[j++] = attribute.getY(i);
          if (itemSize >= 3) array[j++] = attribute.getZ(i);
          if (itemSize >= 4) array[j++] = attribute.getW(i);

        }

        return new THREE.BufferAttribute(array, itemSize, attribute.normalized);

      }

      return attribute.clone();

    }

    /* GLTF PARSER */

    function GLTFParser(json, extensions, options) {

      this.json = json || {};
      this.extensions = extensions || {};
      this.options = options || {};

      // loader object cache
      this.cache = new GLTFRegistry();

      // BufferGeometry caching
      this.primitiveCache = {};

      this.textureLoader = new THREE.TextureLoader(this.options.manager);
      this.textureLoader.setCrossOrigin(this.options.crossOrigin);

      this.fileLoader = new THREE.FileLoader(this.options.manager);
      this.fileLoader.setResponseType('arraybuffer');

      if (this.options.crossOrigin === 'use-credentials') {

        this.fileLoader.setWithCredentials(true);

      }

    }

    GLTFParser.prototype.parse = function (onLoad, onError) {

      var parser = this;
      var json = this.json;
      var extensions = this.extensions;

      // Clear the loader cache
      this.cache.removeAll();

      // Mark the special nodes/meshes in json for efficient parse
      this.markDefs();

      Promise.all([

        this.getDependencies('scene'),
        this.getDependencies('animation'),
        this.getDependencies('camera'),

      ]).then(function (dependencies) {

        var result = {
          scene: dependencies[0][json.scene || 0],
          scenes: dependencies[0],
          animations: dependencies[1],
          cameras: dependencies[2],
          asset: json.asset,
          parser: parser,
          userData: {}
        };

        addUnknownExtensionsToUserData(extensions, result, json);

        assignExtrasToUserData(result, json);

        onLoad(result);

      }).catch(onError);

    };

    /**
     * Marks the special nodes/meshes in json for efficient parse.
     */
    GLTFParser.prototype.markDefs = function () {

      var nodeDefs = this.json.nodes || [];
      var skinDefs = this.json.skins || [];
      var meshDefs = this.json.meshes || [];

      var meshReferences = {};
      var meshUses = {};

      // Nothing in the node definition indicates whether it is a Bone or an
      // Object3D. Use the skins' joint references to mark bones.
      for (var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++) {

        var joints = skinDefs[skinIndex].joints;

        for (var i = 0, il = joints.length; i < il; i++) {

          nodeDefs[joints[i]].isBone = true;

        }

      }

      // Meshes can (and should) be reused by multiple nodes in a glTF asset. To
      // avoid having more than one THREE.Mesh with the same name, count
      // references and rename instances below.
      //
      // Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
      for (var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) {

        var nodeDef = nodeDefs[nodeIndex];

        if (nodeDef.mesh !== undefined) {

          if (meshReferences[nodeDef.mesh] === undefined) {

            meshReferences[nodeDef.mesh] = meshUses[nodeDef.mesh] = 0;

          }

          meshReferences[nodeDef.mesh]++;

          // Nothing in the mesh definition indicates whether it is
          // a SkinnedMesh or Mesh. Use the node's mesh reference
          // to mark SkinnedMesh if node has skin.
          if (nodeDef.skin !== undefined) {

            meshDefs[nodeDef.mesh].isSkinnedMesh = true;

          }

        }

      }

      this.json.meshReferences = meshReferences;
      this.json.meshUses = meshUses;

    };

    /**
     * Requests the specified dependency asynchronously, with caching.
     * @param {string} type
     * @param {number} index
     * @return {Promise}
     */
    GLTFParser.prototype.getDependency = function (type, index) {

      var cacheKey = type + ':' + index;
      var dependency = this.cache.get(cacheKey);

      if (!dependency) {

        switch (type) {

          case 'scene':
            dependency = this.loadScene(index);
            break;

          case 'node':
            dependency = this.loadNode(index);
            break;

          case 'mesh':
            dependency = this.loadMesh(index);
            break;

          case 'accessor':
            dependency = this.loadAccessor(index);
            break;

          case 'bufferView':
            dependency = this.loadBufferView(index);
            break;

          case 'buffer':
            dependency = this.loadBuffer(index);
            break;

          case 'material':
            dependency = this.loadMaterial(index);
            break;

          case 'texture':
            dependency = this.loadTexture(index);
            break;

          case 'skin':
            dependency = this.loadSkin(index);
            break;

          case 'animation':
            dependency = this.loadAnimation(index);
            break;

          case 'camera':
            dependency = this.loadCamera(index);
            break;

          case 'light':
            dependency = this.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].loadLight(index);
            break;

          default:
            throw new Error('Unknown type: ' + type);

        }

        this.cache.add(cacheKey, dependency);

      }

      return dependency;

    };

    /**
     * Requests all dependencies of the specified type asynchronously, with caching.
     * @param {string} type
     * @return {Promise>}
     */
    GLTFParser.prototype.getDependencies = function (type) {

      var dependencies = this.cache.get(type);

      if (!dependencies) {

        var parser = this;
        var defs = this.json[type + (type === 'mesh' ? 'es' : 's')] || [];

        dependencies = Promise.all(defs.map(function (def, index) {

          return parser.getDependency(type, index);

        }));

        this.cache.add(type, dependencies);

      }

      return dependencies;

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
     * @param {number} bufferIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadBuffer = function (bufferIndex) {

      var bufferDef = this.json.buffers[bufferIndex];
      var loader = this.fileLoader;

      if (bufferDef.type && bufferDef.type !== 'arraybuffer') {

        throw new Error('THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.');

      }

      // If present, GLB container is required to be the first buffer.
      if (bufferDef.uri === undefined && bufferIndex === 0) {

        return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body);

      }

      var options = this.options;

      return new Promise(function (resolve, reject) {

        loader.load(resolveURL(bufferDef.uri, options.path), resolve, undefined, function () {

          reject(new Error('THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".'));

        });

      });

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
     * @param {number} bufferViewIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadBufferView = function (bufferViewIndex) {

      var bufferViewDef = this.json.bufferViews[bufferViewIndex];

      return this.getDependency('buffer', bufferViewDef.buffer).then(function (buffer) {

        var byteLength = bufferViewDef.byteLength || 0;
        var byteOffset = bufferViewDef.byteOffset || 0;
        return buffer.slice(byteOffset, byteOffset + byteLength);

      });

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
     * @param {number} accessorIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadAccessor = function (accessorIndex) {

      var parser = this;
      var json = this.json;

      var accessorDef = this.json.accessors[accessorIndex];

      if (accessorDef.bufferView === undefined && accessorDef.sparse === undefined) {

        // Ignore empty accessors, which may be used to declare runtime
        // information about attributes coming from another source (e.g. Draco
        // compression extension).
        return Promise.resolve(null);

      }

      var pendingBufferViews = [];

      if (accessorDef.bufferView !== undefined) {

        pendingBufferViews.push(this.getDependency('bufferView', accessorDef.bufferView));

      } else {

        pendingBufferViews.push(null);

      }

      if (accessorDef.sparse !== undefined) {

        pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.indices.bufferView));
        pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.values.bufferView));

      }

      return Promise.all(pendingBufferViews).then(function (bufferViews) {

        var bufferView = bufferViews[0];

        var itemSize = WEBGL_TYPE_SIZES[accessorDef.type];
        var TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType];

        // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
        var elementBytes = TypedArray.BYTES_PER_ELEMENT;
        var itemBytes = elementBytes * itemSize;
        var byteOffset = accessorDef.byteOffset || 0;
        var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[accessorDef.bufferView].byteStride : undefined;
        var normalized = accessorDef.normalized === true;
        var array, bufferAttribute;

        // The buffer is not interleaved if the stride is the item size in bytes.
        if (byteStride && byteStride !== itemBytes) {

          // Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
          // This makes sure that IBA.count reflects accessor.count properly
          var ibSlice = Math.floor(byteOffset / byteStride);
          var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
          var ib = parser.cache.get(ibCacheKey);

          if (!ib) {

            array = new TypedArray(bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes);

            // Integer parameters to IB/IBA are in array elements, not bytes.
            ib = new THREE.InterleavedBuffer(array, byteStride / elementBytes);

            parser.cache.add(ibCacheKey, ib);

          }

          bufferAttribute = new THREE.InterleavedBufferAttribute(ib, itemSize, (byteOffset % byteStride) / elementBytes, normalized);

        } else {

          if (bufferView === null) {

            array = new TypedArray(accessorDef.count * itemSize);

          } else {

            array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize);

          }

          bufferAttribute = new THREE.BufferAttribute(array, itemSize, normalized);

        }

        // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
        if (accessorDef.sparse !== undefined) {

          var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
          var TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType];

          var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
          var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;

          var sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices);
          var sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize);

          if (bufferView !== null) {

            // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
            bufferAttribute.setArray(bufferAttribute.array.slice());

          }

          for (var i = 0, il = sparseIndices.length; i < il; i++) {

            var index = sparseIndices[i];

            bufferAttribute.setX(index, sparseValues[i * itemSize]);
            if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize + 1]);
            if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize + 2]);
            if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize + 3]);
            if (itemSize >= 5) throw new Error('THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.');

          }

        }

        return bufferAttribute;

      });

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
     * @param {number} textureIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadTexture = function (textureIndex) {

      var parser = this;
      var json = this.json;
      var options = this.options;
      var textureLoader = this.textureLoader;

      var URL = window.URL || window.webkitURL;

      var textureDef = json.textures[textureIndex];

      var textureExtensions = textureDef.extensions || {};

      var source;

      if (textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS]) {

        source = json.images[textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS].source];

      } else {

        source = json.images[textureDef.source];

      }

      var sourceURI = source.uri;
      var isObjectURL = false;

      if (source.bufferView !== undefined) {

        // Load binary image data from bufferView, if provided.

        sourceURI = parser.getDependency('bufferView', source.bufferView).then(function (bufferView) {

          isObjectURL = true;
          var blob = new Blob([bufferView], { type: source.mimeType });
          sourceURI = URL.createObjectURL(blob);
          return sourceURI;

        });

      }

      return Promise.resolve(sourceURI).then(function (sourceURI) {

        // Load Texture resource.

        var loader = THREE.Loader.Handlers.get(sourceURI);

        if (!loader) {

          loader = textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS]
            ? parser.extensions[EXTENSIONS.MSFT_TEXTURE_DDS].ddsLoader
            : textureLoader;

        }

        return new Promise(function (resolve, reject) {

          loader.load(resolveURL(sourceURI, options.path), resolve, undefined, reject);

        });

      }).then(function (texture) {

        // Clean up resources and configure Texture.

        if (isObjectURL === true) {

          URL.revokeObjectURL(sourceURI);

        }

        texture.flipY = false;

        if (textureDef.name !== undefined) texture.name = textureDef.name;

        // Ignore unknown mime types, like DDS files.
        if (source.mimeType in MIME_TYPE_FORMATS) {

          texture.format = MIME_TYPE_FORMATS[source.mimeType];

        }

        var samplers = json.samplers || {};
        var sampler = samplers[textureDef.sampler] || {};

        texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || THREE.LinearFilter;
        texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || THREE.LinearMipmapLinearFilter;
        texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || THREE.RepeatWrapping;
        texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || THREE.RepeatWrapping;

        return texture;

      });

    };

    /**
     * Asynchronously assigns a texture to the given material parameters.
     * @param {Object} materialParams
     * @param {string} mapName
     * @param {Object} mapDef
     * @return {Promise}
     */
    GLTFParser.prototype.assignTexture = function (materialParams, mapName, mapDef) {

      var parser = this;

      return this.getDependency('texture', mapDef.index).then(function (texture) {

        if (!texture.isCompressedTexture) {

          switch (mapName) {

            case 'aoMap':
            case 'emissiveMap':
            case 'metalnessMap':
            case 'normalMap':
            case 'roughnessMap':
              texture.format = THREE.RGBFormat;
              break;

          }

        }

        if (parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM]) {

          var transform = mapDef.extensions !== undefined ? mapDef.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] : undefined;

          if (transform) {

            texture = parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM].extendTexture(texture, transform);

          }

        }

        materialParams[mapName] = texture;

      });

    };

    /**
     * Assigns final material to a Mesh, Line, or Points instance. The instance
     * already has a material (generated from the glTF material options alone)
     * but reuse of the same glTF material may require multiple threejs materials
     * to accomodate different primitive types, defines, etc. New materials will
     * be created if necessary, and reused from a cache.
     * @param  {THREE.Object3D} mesh Mesh, Line, or Points instance.
     */
    GLTFParser.prototype.assignFinalMaterial = function (mesh) {

      var geometry = mesh.geometry;
      var material = mesh.material;
      var extensions = this.extensions;

      var useVertexTangents = geometry.attributes.tangent !== undefined;
      var useVertexColors = geometry.attributes.color !== undefined;
      var useFlatShading = geometry.attributes.normal === undefined;
      var useSkinning = mesh.isSkinnedMesh === true;
      var useMorphTargets = Object.keys(geometry.morphAttributes).length > 0;
      var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;

      if (mesh.isPoints) {

        var cacheKey = 'PointsMaterial:' + material.uuid;

        var pointsMaterial = this.cache.get(cacheKey);

        if (!pointsMaterial) {

          pointsMaterial = new THREE.PointsMaterial();
          THREE.Material.prototype.copy.call(pointsMaterial, material);
          pointsMaterial.color.copy(material.color);
          pointsMaterial.map = material.map;
          pointsMaterial.lights = false; // PointsMaterial doesn't support lights yet
          pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px

          this.cache.add(cacheKey, pointsMaterial);

        }

        material = pointsMaterial;

      } else if (mesh.isLine) {

        var cacheKey = 'LineBasicMaterial:' + material.uuid;

        var lineMaterial = this.cache.get(cacheKey);

        if (!lineMaterial) {

          lineMaterial = new THREE.LineBasicMaterial();
          THREE.Material.prototype.copy.call(lineMaterial, material);
          lineMaterial.color.copy(material.color);
          lineMaterial.lights = false; // LineBasicMaterial doesn't support lights yet

          this.cache.add(cacheKey, lineMaterial);

        }

        material = lineMaterial;

      }

      // Clone the material if it will be modified
      if (useVertexTangents || useVertexColors || useFlatShading || useSkinning || useMorphTargets) {

        var cacheKey = 'ClonedMaterial:' + material.uuid + ':';

        if (material.isGLTFSpecularGlossinessMaterial) cacheKey += 'specular-glossiness:';
        if (useSkinning) cacheKey += 'skinning:';
        if (useVertexTangents) cacheKey += 'vertex-tangents:';
        if (useVertexColors) cacheKey += 'vertex-colors:';
        if (useFlatShading) cacheKey += 'flat-shading:';
        if (useMorphTargets) cacheKey += 'morph-targets:';
        if (useMorphNormals) cacheKey += 'morph-normals:';

        var cachedMaterial = this.cache.get(cacheKey);

        if (!cachedMaterial) {

          cachedMaterial = material.isGLTFSpecularGlossinessMaterial
            ? extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].cloneMaterial(material)
            : material.clone();

          if (useSkinning) cachedMaterial.skinning = true;
          if (useVertexTangents) cachedMaterial.vertexTangents = true;
          if (useVertexColors) cachedMaterial.vertexColors = THREE.VertexColors;
          if (useFlatShading) cachedMaterial.flatShading = true;
          if (useMorphTargets) cachedMaterial.morphTargets = true;
          if (useMorphNormals) cachedMaterial.morphNormals = true;

          this.cache.add(cacheKey, cachedMaterial);

        }

        material = cachedMaterial;

      }

      // workarounds for mesh and geometry

      if (material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined) {

        console.log('THREE.GLTFLoader: Duplicating UVs to support aoMap.');
        geometry.addAttribute('uv2', new THREE.BufferAttribute(geometry.attributes.uv.array, 2));

      }

      if (material.isGLTFSpecularGlossinessMaterial) {

        // for GLTFSpecularGlossinessMaterial(ShaderMaterial) uniforms runtime update
        mesh.onBeforeRender = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].refreshUniforms;

      }

      mesh.material = material;

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
     * @param {number} materialIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadMaterial = function (materialIndex) {

      var parser = this;
      var json = this.json;
      var extensions = this.extensions;
      var materialDef = json.materials[materialIndex];

      var materialType;
      var materialParams = {};
      var materialExtensions = materialDef.extensions || {};

      var pending = [];

      if (materialExtensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS]) {

        var sgExtension = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS];
        materialType = sgExtension.getMaterialType();
        pending.push(sgExtension.extendParams(materialParams, materialDef, parser));

      } else if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) {

        var kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT];
        materialType = kmuExtension.getMaterialType();
        pending.push(kmuExtension.extendParams(materialParams, materialDef, parser));

      } else {

        // Specification:
        // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material

        materialType = THREE.MeshStandardMaterial;

        var metallicRoughness = materialDef.pbrMetallicRoughness || {};

        materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
        materialParams.opacity = 1.0;

        if (Array.isArray(metallicRoughness.baseColorFactor)) {

          var array = metallicRoughness.baseColorFactor;

          materialParams.color.fromArray(array);
          materialParams.opacity = array[3];

        }

        if (metallicRoughness.baseColorTexture !== undefined) {

          pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture));

        }

        materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
        materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;

        if (metallicRoughness.metallicRoughnessTexture !== undefined) {

          pending.push(parser.assignTexture(materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture));
          pending.push(parser.assignTexture(materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture));

        }

      }

      if (materialDef.doubleSided === true) {

        materialParams.side = THREE.DoubleSide;

      }

      var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;

      if (alphaMode === ALPHA_MODES.BLEND) {

        materialParams.transparent = true;

      } else {

        materialParams.transparent = false;

        if (alphaMode === ALPHA_MODES.MASK) {

          materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;

        }

      }

      if (materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {

        pending.push(parser.assignTexture(materialParams, 'normalMap', materialDef.normalTexture));

        materialParams.normalScale = new THREE.Vector2(1, 1);

        if (materialDef.normalTexture.scale !== undefined) {

          materialParams.normalScale.set(materialDef.normalTexture.scale, materialDef.normalTexture.scale);

        }

      }

      if (materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {

        pending.push(parser.assignTexture(materialParams, 'aoMap', materialDef.occlusionTexture));

        if (materialDef.occlusionTexture.strength !== undefined) {

          materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;

        }

      }

      if (materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial) {

        materialParams.emissive = new THREE.Color().fromArray(materialDef.emissiveFactor);

      }

      if (materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {

        pending.push(parser.assignTexture(materialParams, 'emissiveMap', materialDef.emissiveTexture));

      }

      return Promise.all(pending).then(function () {

        var material;

        if (materialType === THREE.ShaderMaterial) {

          material = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].createMaterial(materialParams);

        } else {

          material = new materialType(materialParams);

        }

        if (materialDef.name !== undefined) material.name = materialDef.name;

        // baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding.
        if (material.map) material.map.encoding = THREE.sRGBEncoding;
        if (material.emissiveMap) material.emissiveMap.encoding = THREE.sRGBEncoding;
        if (material.specularMap) material.specularMap.encoding = THREE.sRGBEncoding;

        assignExtrasToUserData(material, materialDef);

        if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef);

        return material;

      });

    };

    /**
     * @param {THREE.BufferGeometry} geometry
     * @param {GLTF.Primitive} primitiveDef
     * @param {GLTFParser} parser
     * @return {Promise}
     */
    function addPrimitiveAttributes(geometry, primitiveDef, parser) {

      var attributes = primitiveDef.attributes;

      var pending = [];

      function assignAttributeAccessor(accessorIndex, attributeName) {

        return parser.getDependency('accessor', accessorIndex)
          .then(function (accessor) {

            geometry.addAttribute(attributeName, accessor);

          });

      }

      for (var gltfAttributeName in attributes) {

        var threeAttributeName = ATTRIBUTES[gltfAttributeName] || gltfAttributeName.toLowerCase();

        // Skip attributes already provided by e.g. Draco extension.
        if (threeAttributeName in geometry.attributes) continue;

        pending.push(assignAttributeAccessor(attributes[gltfAttributeName], threeAttributeName));

      }

      if (primitiveDef.indices !== undefined && !geometry.index) {

        var accessor = parser.getDependency('accessor', primitiveDef.indices).then(function (accessor) {

          geometry.setIndex(accessor);

        });

        pending.push(accessor);

      }

      assignExtrasToUserData(geometry, primitiveDef);

      return Promise.all(pending).then(function () {

        return primitiveDef.targets !== undefined
          ? addMorphTargets(geometry, primitiveDef.targets, parser)
          : geometry;

      });

    }

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
     *
     * Creates BufferGeometries from primitives.
     *
     * @param {Array} primitives
     * @return {Promise>}
     */
    GLTFParser.prototype.loadGeometries = function (primitives) {

      var parser = this;
      var extensions = this.extensions;
      var cache = this.primitiveCache;

      function createDracoPrimitive(primitive) {

        return extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]
          .decodePrimitive(primitive, parser)
          .then(function (geometry) {

            return addPrimitiveAttributes(geometry, primitive, parser);

          });

      }

      var pending = [];

      for (var i = 0, il = primitives.length; i < il; i++) {

        var primitive = primitives[i];
        var cacheKey = createPrimitiveKey(primitive);

        // See if we've already created this geometry
        var cached = cache[cacheKey];

        if (cached) {

          // Use the cached geometry if it exists
          pending.push(cached.promise);

        } else {

          var geometryPromise;

          if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) {

            // Use DRACO geometry if available
            geometryPromise = createDracoPrimitive(primitive);

          } else {

            // Otherwise create a new geometry
            geometryPromise = addPrimitiveAttributes(new THREE.BufferGeometry(), primitive, parser);

          }

          // Cache this geometry
          cache[cacheKey] = { primitive: primitive, promise: geometryPromise };

          pending.push(geometryPromise);

        }

      }

      return Promise.all(pending);

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
     * @param {number} meshIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadMesh = function (meshIndex) {

      var parser = this;
      var json = this.json;

      var meshDef = json.meshes[meshIndex];
      var primitives = meshDef.primitives;

      var pending = [];

      for (var i = 0, il = primitives.length; i < il; i++) {

        var material = primitives[i].material === undefined
          ? createDefaultMaterial()
          : this.getDependency('material', primitives[i].material);

        pending.push(material);

      }

      return Promise.all(pending).then(function (originalMaterials) {

        return parser.loadGeometries(primitives).then(function (geometries) {

          var meshes = [];

          for (var i = 0, il = geometries.length; i < il; i++) {

            var geometry = geometries[i];
            var primitive = primitives[i];

            // 1. create Mesh

            var mesh;

            var material = originalMaterials[i];

            if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
              primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
              primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
              primitive.mode === undefined) {

              // .isSkinnedMesh isn't in glTF spec. See .markDefs()
              mesh = meshDef.isSkinnedMesh === true
                ? new THREE.SkinnedMesh(geometry, material)
                : new THREE.Mesh(geometry, material);

              if (mesh.isSkinnedMesh === true && !mesh.geometry.attributes.skinWeight.normalized) {

                // we normalize floating point skin weight array to fix malformed assets (see #15319)
                // it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs
                mesh.normalizeSkinWeights();

              }

              if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) {

                mesh.drawMode = THREE.TriangleStripDrawMode;

              } else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) {

                mesh.drawMode = THREE.TriangleFanDrawMode;

              }

            } else if (primitive.mode === WEBGL_CONSTANTS.LINES) {

              mesh = new THREE.LineSegments(geometry, material);

            } else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) {

              mesh = new THREE.Line(geometry, material);

            } else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) {

              mesh = new THREE.LineLoop(geometry, material);

            } else if (primitive.mode === WEBGL_CONSTANTS.POINTS) {

              mesh = new THREE.Points(geometry, material);

            } else {

              throw new Error('THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode);

            }

            if (Object.keys(mesh.geometry.morphAttributes).length > 0) {

              updateMorphTargets(mesh, meshDef);

            }

            mesh.name = meshDef.name || ('mesh_' + meshIndex);

            if (geometries.length > 1) mesh.name += '_' + i;

            assignExtrasToUserData(mesh, meshDef);

            parser.assignFinalMaterial(mesh);

            meshes.push(mesh);

          }

          if (meshes.length === 1) {

            return meshes[0];

          }

          var group = new THREE.Group();

          for (var i = 0, il = meshes.length; i < il; i++) {

            group.add(meshes[i]);

          }

          return group;

        });

      });

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
     * @param {number} cameraIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadCamera = function (cameraIndex) {

      var camera;
      var cameraDef = this.json.cameras[cameraIndex];
      var params = cameraDef[cameraDef.type];

      if (!params) {

        console.warn('THREE.GLTFLoader: Missing camera parameters.');
        return;

      }

      if (cameraDef.type === 'perspective') {

        camera = new THREE.PerspectiveCamera(THREE.Math.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6);

      } else if (cameraDef.type === 'orthographic') {

        camera = new THREE.OrthographicCamera(params.xmag / - 2, params.xmag / 2, params.ymag / 2, params.ymag / - 2, params.znear, params.zfar);

      }

      if (cameraDef.name !== undefined) camera.name = cameraDef.name;

      assignExtrasToUserData(camera, cameraDef);

      return Promise.resolve(camera);

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
     * @param {number} skinIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadSkin = function (skinIndex) {

      var skinDef = this.json.skins[skinIndex];

      var skinEntry = { joints: skinDef.joints };

      if (skinDef.inverseBindMatrices === undefined) {

        return Promise.resolve(skinEntry);

      }

      return this.getDependency('accessor', skinDef.inverseBindMatrices).then(function (accessor) {

        skinEntry.inverseBindMatrices = accessor;

        return skinEntry;

      });

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
     * @param {number} animationIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadAnimation = function (animationIndex) {

      var json = this.json;

      var animationDef = json.animations[animationIndex];

      var pendingNodes = [];
      var pendingInputAccessors = [];
      var pendingOutputAccessors = [];
      var pendingSamplers = [];
      var pendingTargets = [];

      for (var i = 0, il = animationDef.channels.length; i < il; i++) {

        var channel = animationDef.channels[i];
        var sampler = animationDef.samplers[channel.sampler];
        var target = channel.target;
        var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
        var input = animationDef.parameters !== undefined ? animationDef.parameters[sampler.input] : sampler.input;
        var output = animationDef.parameters !== undefined ? animationDef.parameters[sampler.output] : sampler.output;

        pendingNodes.push(this.getDependency('node', name));
        pendingInputAccessors.push(this.getDependency('accessor', input));
        pendingOutputAccessors.push(this.getDependency('accessor', output));
        pendingSamplers.push(sampler);
        pendingTargets.push(target);

      }

      return Promise.all([

        Promise.all(pendingNodes),
        Promise.all(pendingInputAccessors),
        Promise.all(pendingOutputAccessors),
        Promise.all(pendingSamplers),
        Promise.all(pendingTargets)

      ]).then(function (dependencies) {

        var nodes = dependencies[0];
        var inputAccessors = dependencies[1];
        var outputAccessors = dependencies[2];
        var samplers = dependencies[3];
        var targets = dependencies[4];

        var tracks = [];

        for (var i = 0, il = nodes.length; i < il; i++) {

          var node = nodes[i];
          var inputAccessor = inputAccessors[i];
          var outputAccessor = outputAccessors[i];
          var sampler = samplers[i];
          var target = targets[i];

          if (node === undefined) continue;

          node.updateMatrix();
          node.matrixAutoUpdate = true;

          var TypedKeyframeTrack;

          switch (PATH_PROPERTIES[target.path]) {

            case PATH_PROPERTIES.weights:

              TypedKeyframeTrack = THREE.NumberKeyframeTrack;
              break;

            case PATH_PROPERTIES.rotation:

              TypedKeyframeTrack = THREE.QuaternionKeyframeTrack;
              break;

            case PATH_PROPERTIES.position:
            case PATH_PROPERTIES.scale:
            default:

              TypedKeyframeTrack = THREE.VectorKeyframeTrack;
              break;

          }

          var targetName = node.name ? node.name : node.uuid;

          var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[sampler.interpolation] : THREE.InterpolateLinear;

          var targetNames = [];

          if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) {

            // Node may be a THREE.Group (glTF mesh with several primitives) or a THREE.Mesh.
            node.traverse(function (object) {

              if (object.isMesh === true && object.morphTargetInfluences) {

                targetNames.push(object.name ? object.name : object.uuid);

              }

            });

          } else {

            targetNames.push(targetName);

          }

          var outputArray = outputAccessor.array;

          if (outputAccessor.normalized) {

            var scale;

            if (outputArray.constructor === Int8Array) {

              scale = 1 / 127;

            } else if (outputArray.constructor === Uint8Array) {

              scale = 1 / 255;

            } else if (outputArray.constructor == Int16Array) {

              scale = 1 / 32767;

            } else if (outputArray.constructor === Uint16Array) {

              scale = 1 / 65535;

            } else {

              throw new Error('THREE.GLTFLoader: Unsupported output accessor component type.');

            }

            var scaled = new Float32Array(outputArray.length);

            for (var j = 0, jl = outputArray.length; j < jl; j++) {

              scaled[j] = outputArray[j] * scale;

            }

            outputArray = scaled;

          }

          for (var j = 0, jl = targetNames.length; j < jl; j++) {

            var track = new TypedKeyframeTrack(
              targetNames[j] + '.' + PATH_PROPERTIES[target.path],
              inputAccessor.array,
              outputArray,
              interpolation
            );

            // Override interpolation with custom factory method.
            if (sampler.interpolation === 'CUBICSPLINE') {

              track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline(result) {

                // A CUBICSPLINE keyframe in glTF has three output values for each input value,
                // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
                // must be divided by three to get the interpolant's sampleSize argument.

                return new GLTFCubicSplineInterpolant(this.times, this.values, this.getValueSize() / 3, result);

              };

              // Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
              track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;

            }

            tracks.push(track);

          }

        }

        var name = animationDef.name !== undefined ? animationDef.name : 'animation_' + animationIndex;

        return new THREE.AnimationClip(name, undefined, tracks);

      });

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
     * @param {number} nodeIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadNode = function (nodeIndex) {

      var json = this.json;
      var extensions = this.extensions;
      var parser = this;

      var meshReferences = json.meshReferences;
      var meshUses = json.meshUses;

      var nodeDef = json.nodes[nodeIndex];

      return (function () {

        var pending = [];

        if (nodeDef.mesh !== undefined) {

          pending.push(parser.getDependency('mesh', nodeDef.mesh).then(function (mesh) {

            var node;

            if (meshReferences[nodeDef.mesh] > 1) {

              var instanceNum = meshUses[nodeDef.mesh]++;

              node = mesh.clone();
              node.name += '_instance_' + instanceNum;

              // onBeforeRender copy for Specular-Glossiness
              node.onBeforeRender = mesh.onBeforeRender;

              for (var i = 0, il = node.children.length; i < il; i++) {

                node.children[i].name += '_instance_' + instanceNum;
                node.children[i].onBeforeRender = mesh.children[i].onBeforeRender;

              }

            } else {

              node = mesh;

            }

            // if weights are provided on the node, override weights on the mesh.
            if (nodeDef.weights !== undefined) {

              node.traverse(function (o) {

                if (!o.isMesh) return;

                for (var i = 0, il = nodeDef.weights.length; i < il; i++) {

                  o.morphTargetInfluences[i] = nodeDef.weights[i];

                }

              });

            }

            return node;

          }));

        }

        if (nodeDef.camera !== undefined) {

          pending.push(parser.getDependency('camera', nodeDef.camera));

        }

        if (nodeDef.extensions
          && nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL]
          && nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].light !== undefined) {

          pending.push(parser.getDependency('light', nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].light));

        }

        return Promise.all(pending);

      }()).then(function (objects) {

        var node;

        // .isBone isn't in glTF spec. See .markDefs
        if (nodeDef.isBone === true) {

          node = new THREE.Bone();

        } else if (objects.length > 1) {

          node = new THREE.Group();

        } else if (objects.length === 1) {

          node = objects[0];

        } else {

          node = new THREE.Object3D();

        }

        if (node !== objects[0]) {

          for (var i = 0, il = objects.length; i < il; i++) {

            node.add(objects[i]);

          }

        }

        if (nodeDef.name !== undefined) {

          node.userData.name = nodeDef.name;
          node.name = THREE.PropertyBinding.sanitizeNodeName(nodeDef.name);

        }

        assignExtrasToUserData(node, nodeDef);

        if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef);

        if (nodeDef.matrix !== undefined) {

          var matrix = new THREE.Matrix4();
          matrix.fromArray(nodeDef.matrix);
          node.applyMatrix(matrix);

        } else {

          if (nodeDef.translation !== undefined) {

            node.position.fromArray(nodeDef.translation);

          }

          if (nodeDef.rotation !== undefined) {

            node.quaternion.fromArray(nodeDef.rotation);

          }

          if (nodeDef.scale !== undefined) {

            node.scale.fromArray(nodeDef.scale);

          }

        }

        return node;

      });

    };

    /**
     * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
     * @param {number} sceneIndex
     * @return {Promise}
     */
    GLTFParser.prototype.loadScene = function () {

      // scene node hierachy builder

      function buildNodeHierachy(nodeId, parentObject, json, parser) {

        var nodeDef = json.nodes[nodeId];

        return parser.getDependency('node', nodeId).then(function (node) {

          if (nodeDef.skin === undefined) return node;

          // build skeleton here as well

          var skinEntry;

          return parser.getDependency('skin', nodeDef.skin).then(function (skin) {

            skinEntry = skin;

            var pendingJoints = [];

            for (var i = 0, il = skinEntry.joints.length; i < il; i++) {

              pendingJoints.push(parser.getDependency('node', skinEntry.joints[i]));

            }

            return Promise.all(pendingJoints);

          }).then(function (jointNodes) {

            node.traverse(function (mesh) {

              if (!mesh.isMesh) return;

              var bones = [];
              var boneInverses = [];

              for (var j = 0, jl = jointNodes.length; j < jl; j++) {

                var jointNode = jointNodes[j];

                if (jointNode) {

                  bones.push(jointNode);

                  var mat = new THREE.Matrix4();

                  if (skinEntry.inverseBindMatrices !== undefined) {

                    mat.fromArray(skinEntry.inverseBindMatrices.array, j * 16);

                  }

                  boneInverses.push(mat);

                } else {

                  console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[j]);

                }

              }

              mesh.bind(new THREE.Skeleton(bones, boneInverses), mesh.matrixWorld);

            });

            return node;

          });

        }).then(function (node) {

          // build node hierachy

          parentObject.add(node);

          var pending = [];

          if (nodeDef.children) {

            var children = nodeDef.children;

            for (var i = 0, il = children.length; i < il; i++) {

              var child = children[i];
              pending.push(buildNodeHierachy(child, node, json, parser));

            }

          }

          return Promise.all(pending);

        });

      }

      return function loadScene(sceneIndex) {

        var json = this.json;
        var extensions = this.extensions;
        var sceneDef = this.json.scenes[sceneIndex];
        var parser = this;

        var scene = new THREE.Scene();
        if (sceneDef.name !== undefined) scene.name = sceneDef.name;

        assignExtrasToUserData(scene, sceneDef);

        if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef);

        var nodeIds = sceneDef.nodes || [];

        var pending = [];

        for (var i = 0, il = nodeIds.length; i < il; i++) {

          pending.push(buildNodeHierachy(nodeIds[i], scene, json, parser));

        }

        return Promise.all(pending).then(function () {

          return scene;

        });

      };

    }();

    return GLTFLoader;

  })();
}
 
/**
 * @author qiao / https://github.com/qiao
 * @author mrdoob / http://mrdoob.com
 * @author alteredq / http://alteredqualia.com/
 * @author WestLangley / http://github.com/WestLangley
 * @author erich666 / http://erichaines.com
 * @author ScieCode / http://github.com/sciecode
 */

const registerOrbit = (THREE) => {
	const {
		EventDispatcher,
		MOUSE,
		Quaternion,
		Spherical,
		TOUCH,
		Vector2,
		Vector3
	} = THREE

	// This set of controls performs orbiting, dollying (zooming), and panning.
	// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
	//
	//    Orbit - left mouse / touch: one-finger move
	//    Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
	//    Pan - right mouse, or left mouse + ctrl/meta/shiftKey, or arrow keys / touch: two-finger move

	var OrbitControls = function (object, domElement) {

		if (domElement === undefined) console.warn('THREE.OrbitControls: The second parameter "domElement" is now mandatory.');
		if (domElement === document) console.error('THREE.OrbitControls: "document" should not be used as the target "domElement". Please use "renderer.domElement" instead.');

		this.object = object;
		this.domElement = domElement;

		// Set to false to disable this control
		this.enabled = true;

		// "target" sets the location of focus, where the object orbits around
		this.target = new Vector3();

		// How far you can dolly in and out ( PerspectiveCamera only )
		this.minDistance = 0;
		this.maxDistance = Infinity;

		// How far you can zoom in and out ( OrthographicCamera only )
		this.minZoom = 0;
		this.maxZoom = Infinity;

		// How far you can orbit vertically, upper and lower limits.
		// Range is 0 to Math.PI radians.
		this.minPolarAngle = 0; // radians
		this.maxPolarAngle = Math.PI; // radians

		// How far you can orbit horizontally, upper and lower limits.
		// If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ].
		this.minAzimuthAngle = -Infinity; // radians
		this.maxAzimuthAngle = Infinity; // radians

		// Set to true to enable damping (inertia)
		// If damping is enabled, you must call controls.update() in your animation loop
		this.enableDamping = false;
		this.dampingFactor = 0.05;

		// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
		// Set to false to disable zooming
		this.enableZoom = true;
		this.zoomSpeed = 1.0;

		// Set to false to disable rotating
		this.enableRotate = true;
		this.rotateSpeed = 1.0;

		// Set to false to disable panning
		this.enablePan = true;
		this.panSpeed = 1.0;
		this.screenSpacePanning = false; // if true, pan in screen-space
		this.keyPanSpeed = 7.0; // pixels moved per arrow key push

		// Set to true to automatically rotate around the target
		// If auto-rotate is enabled, you must call controls.update() in your animation loop
		this.autoRotate = false;
		this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60

		// Set to false to disable use of the keys
		this.enableKeys = true;

		// The four arrow keys
		this.keys = {
			LEFT: 37,
			UP: 38,
			RIGHT: 39,
			BOTTOM: 40
		};

		// Mouse buttons
		this.mouseButtons = {
			LEFT: MOUSE.ROTATE,
			MIDDLE: MOUSE.DOLLY,
			RIGHT: MOUSE.PAN
		};

		// Touch fingers
		this.touches = {
			ONE: TOUCH.ROTATE,
			TWO: TOUCH.DOLLY_PAN
		};

		// for reset
		this.target0 = this.target.clone();
		this.position0 = this.object.position.clone();
		this.zoom0 = this.object.zoom;

		//
		// public methods
		//

		this.getPolarAngle = function () {

			return spherical.phi;

		};

		this.getAzimuthalAngle = function () {

			return spherical.theta;

		};

		this.saveState = function () {

			scope.target0.copy(scope.target);
			scope.position0.copy(scope.object.position);
			scope.zoom0 = scope.object.zoom;

		};

		this.reset = function () {

			scope.target.copy(scope.target0);
			scope.object.position.copy(scope.position0);
			scope.object.zoom = scope.zoom0;

			scope.object.updateProjectionMatrix();
			scope.dispatchEvent(changeEvent);

			scope.update();

			state = STATE.NONE;

		};

		// this method is exposed, but perhaps it would be better if we can make it private...
		this.update = function () {

			var offset = new Vector3();

			// so camera.up is the orbit axis
			var quat = new Quaternion().setFromUnitVectors(object.up, new Vector3(0, 1, 0));
			var quatInverse = quat.clone().inverse();

			var lastPosition = new Vector3();
			var lastQuaternion = new Quaternion();

			return function update() {

				var position = scope.object.position;

				offset.copy(position).sub(scope.target);

				// rotate offset to "y-axis-is-up" space
				offset.applyQuaternion(quat);

				// angle from z-axis around y-axis
				spherical.setFromVector3(offset);

				if (scope.autoRotate && state === STATE.NONE) {

					rotateLeft(getAutoRotationAngle());

				}

				if (scope.enableDamping) {

					spherical.theta += sphericalDelta.theta * scope.dampingFactor;
					spherical.phi += sphericalDelta.phi * scope.dampingFactor;

				} else {

					spherical.theta += sphericalDelta.theta;
					spherical.phi += sphericalDelta.phi;

				}

				// restrict theta to be between desired limits
				spherical.theta = Math.max(scope.minAzimuthAngle, Math.min(scope.maxAzimuthAngle, spherical.theta));

				// restrict phi to be between desired limits
				spherical.phi = Math.max(scope.minPolarAngle, Math.min(scope.maxPolarAngle, spherical.phi));

				spherical.makeSafe();


				spherical.radius *= scale;

				// restrict radius to be between desired limits
				spherical.radius = Math.max(scope.minDistance, Math.min(scope.maxDistance, spherical.radius));

				// move target to panned location

				if (scope.enableDamping === true) {

					scope.target.addScaledVector(panOffset, scope.dampingFactor);

				} else {

					scope.target.add(panOffset);

				}

				offset.setFromSpherical(spherical);

				// rotate offset back to "camera-up-vector-is-up" space
				offset.applyQuaternion(quatInverse);

				position.copy(scope.target).add(offset);

				scope.object.lookAt(scope.target);

				if (scope.enableDamping === true) {

					sphericalDelta.theta *= (1 - scope.dampingFactor);
					sphericalDelta.phi *= (1 - scope.dampingFactor);

					panOffset.multiplyScalar(1 - scope.dampingFactor);

				} else {

					sphericalDelta.set(0, 0, 0);

					panOffset.set(0, 0, 0);

				}

				scale = 1;

				// update condition is:
				// min(camera displacement, camera rotation in radians)^2 > EPS
				// using small-angle approximation cos(x/2) = 1 - x^2 / 8

				if (zoomChanged ||
					lastPosition.distanceToSquared(scope.object.position) > EPS ||
					8 * (1 - lastQuaternion.dot(scope.object.quaternion)) > EPS) {

					scope.dispatchEvent(changeEvent);

					lastPosition.copy(scope.object.position);
					lastQuaternion.copy(scope.object.quaternion);
					zoomChanged = false;

					return true;

				}

				return false;

			};

		}();

		this.dispose = function () {

			scope.domElement.removeEventListener('contextmenu', onContextMenu, false);
			scope.domElement.removeEventListener('mousedown', onMouseDown, false);
			scope.domElement.removeEventListener('wheel', onMouseWheel, false);

			scope.domElement.removeEventListener('touchstart', onTouchStart, false);
			scope.domElement.removeEventListener('touchend', onTouchEnd, false);
			scope.domElement.removeEventListener('touchmove', onTouchMove, false);

			document.removeEventListener('mousemove', onMouseMove, false);
			document.removeEventListener('mouseup', onMouseUp, false);

			scope.domElement.removeEventListener('keydown', onKeyDown, false);

			//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?

		};

		//
		// internals
		//

		var scope = this;

		var changeEvent = {
			type: 'change'
		};
		var startEvent = {
			type: 'start'
		};
		var endEvent = {
			type: 'end'
		};

		var STATE = {
			NONE: -1,
			ROTATE: 0,
			DOLLY: 1,
			PAN: 2,
			TOUCH_ROTATE: 3,
			TOUCH_PAN: 4,
			TOUCH_DOLLY_PAN: 5,
			TOUCH_DOLLY_ROTATE: 6
		};

		var state = STATE.NONE;

		var EPS = 0.000001;

		// current position in spherical coordinates
		var spherical = new Spherical();
		var sphericalDelta = new Spherical();

		var scale = 1;
		var panOffset = new Vector3();
		var zoomChanged = false;

		var rotateStart = new Vector2();
		var rotateEnd = new Vector2();
		var rotateDelta = new Vector2();

		var panStart = new Vector2();
		var panEnd = new Vector2();
		var panDelta = new Vector2();

		var dollyStart = new Vector2();
		var dollyEnd = new Vector2();
		var dollyDelta = new Vector2();

		function getAutoRotationAngle() {

			return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;

		}

		function getZoomScale() {

			return Math.pow(0.95, scope.zoomSpeed);

		}

		function rotateLeft(angle) {

			sphericalDelta.theta -= angle;

		}

		function rotateUp(angle) {

			sphericalDelta.phi -= angle;

		}

		var panLeft = function () {

			var v = new Vector3();

			return function panLeft(distance, objectMatrix) {

				v.setFromMatrixColumn(objectMatrix, 0); // get X column of objectMatrix
				v.multiplyScalar(-distance);

				panOffset.add(v);

			};

		}();

		var panUp = function () {

			var v = new Vector3();

			return function panUp(distance, objectMatrix) {

				if (scope.screenSpacePanning === true) {

					v.setFromMatrixColumn(objectMatrix, 1);

				} else {

					v.setFromMatrixColumn(objectMatrix, 0);
					v.crossVectors(scope.object.up, v);

				}

				v.multiplyScalar(distance);

				panOffset.add(v);

			};

		}();

		// deltaX and deltaY are in pixels; right and down are positive
		var pan = function () {

			var offset = new Vector3();

			return function pan(deltaX, deltaY) {

				var element = scope.domElement;

				if (scope.object.isPerspectiveCamera) {

					// perspective
					var position = scope.object.position;
					offset.copy(position).sub(scope.target);
					var targetDistance = offset.length();

					// half of the fov is center to top of screen
					targetDistance *= Math.tan((scope.object.fov / 2) * Math.PI / 180.0);

					// we use only clientHeight here so aspect ratio does not distort speed
					panLeft(2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix);
					panUp(2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix);

				} else if (scope.object.isOrthographicCamera) {

					// orthographic
					panLeft(deltaX * (scope.object.right - scope.object.left) / scope.object.zoom / element.clientWidth, scope.object.matrix);
					panUp(deltaY * (scope.object.top - scope.object.bottom) / scope.object.zoom / element.clientHeight, scope.object.matrix);

				} else {

					// camera neither orthographic nor perspective
					console.warn('WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.');
					scope.enablePan = false;

				}

			};

		}();

		function dollyOut(dollyScale) {
			if (scope.object.isPerspectiveCamera) {

				scale /= dollyScale;

			} else if (scope.object.isOrthographicCamera) {

				scope.object.zoom = Math.max(scope.minZoom, Math.min(scope.maxZoom, scope.object.zoom * dollyScale));
				scope.object.updateProjectionMatrix();
				zoomChanged = true;

			} else {

				console.warn('WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.');
				scope.enableZoom = false;

			}

		}

		function dollyIn(dollyScale) {

			if (scope.object.isPerspectiveCamera) {

				scale *= dollyScale;

			} else if (scope.object.isOrthographicCamera) {

				scope.object.zoom = Math.max(scope.minZoom, Math.min(scope.maxZoom, scope.object.zoom / dollyScale));
				scope.object.updateProjectionMatrix();
				zoomChanged = true;

			} else {

				console.warn('WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.');
				scope.enableZoom = false;

			}

		}

		//
		// event callbacks - update the object state
		//

		function handleMouseDownRotate(event) {

			rotateStart.set(event.clientX, event.clientY);

		}

		function handleMouseDownDolly(event) {

			dollyStart.set(event.clientX, event.clientY);

		}

		function handleMouseDownPan(event) {

			panStart.set(event.clientX, event.clientY);

		}

		function handleMouseMoveRotate(event) {

			rotateEnd.set(event.clientX, event.clientY);

			rotateDelta.subVectors(rotateEnd, rotateStart).multiplyScalar(scope.rotateSpeed);

			var element = scope.domElement;

			rotateLeft(2 * Math.PI * rotateDelta.x / element.clientHeight); // yes, height

			rotateUp(2 * Math.PI * rotateDelta.y / element.clientHeight);

			rotateStart.copy(rotateEnd);

			scope.update();

		}

		function handleMouseMoveDolly(event) {

			dollyEnd.set(event.clientX, event.clientY);

			dollyDelta.subVectors(dollyEnd, dollyStart);

			if (dollyDelta.y > 0) {

				dollyOut(getZoomScale());

			} else if (dollyDelta.y < 0) {

				dollyIn(getZoomScale());

			}

			dollyStart.copy(dollyEnd);

			scope.update();

		}

		function handleMouseMovePan(event) {

			panEnd.set(event.clientX, event.clientY);

			panDelta.subVectors(panEnd, panStart).multiplyScalar(scope.panSpeed);

			pan(panDelta.x, panDelta.y);

			panStart.copy(panEnd);

			scope.update();

		}

		function handleMouseUp( /*event*/ ) {

			// no-op

		}

		function handleMouseWheel(event) {

			if (event.deltaY < 0) {

				dollyIn(getZoomScale());

			} else if (event.deltaY > 0) {

				dollyOut(getZoomScale());

			}

			scope.update();

		}

		function handleKeyDown(event) {

			var needsUpdate = false;

			switch (event.keyCode) {

				case scope.keys.UP:
					pan(0, scope.keyPanSpeed);
					needsUpdate = true;
					break;

				case scope.keys.BOTTOM:
					pan(0, -scope.keyPanSpeed);
					needsUpdate = true;
					break;

				case scope.keys.LEFT:
					pan(scope.keyPanSpeed, 0);
					needsUpdate = true;
					break;

				case scope.keys.RIGHT:
					pan(-scope.keyPanSpeed, 0);
					needsUpdate = true;
					break;

			}

			if (needsUpdate) {

				// prevent the browser from scrolling on cursor keys
				event.preventDefault();

				scope.update();

			}


		}

		function handleTouchStartRotate(event) {

			if (event.touches.length == 1) {

				rotateStart.set(event.touches[0].pageX, event.touches[0].pageY);

			} else {

				var x = 0.5 * (event.touches[0].pageX + event.touches[1].pageX);
				var y = 0.5 * (event.touches[0].pageY + event.touches[1].pageY);

				rotateStart.set(x, y);

			}

		}

		function handleTouchStartPan(event) {

			if (event.touches.length == 1) {

				panStart.set(event.touches[0].pageX, event.touches[0].pageY);

			} else {

				var x = 0.5 * (event.touches[0].pageX + event.touches[1].pageX);
				var y = 0.5 * (event.touches[0].pageY + event.touches[1].pageY);

				panStart.set(x, y);

			}

		}

		function handleTouchStartDolly(event) {

			var dx = event.touches[0].pageX - event.touches[1].pageX;
			var dy = event.touches[0].pageY - event.touches[1].pageY;

			var distance = Math.sqrt(dx * dx + dy * dy);

			dollyStart.set(0, distance);

		}

		function handleTouchStartDollyPan(event) {

			if (scope.enableZoom) handleTouchStartDolly(event);

			if (scope.enablePan) handleTouchStartPan(event);

		}

		function handleTouchStartDollyRotate(event) {

			if (scope.enableZoom) handleTouchStartDolly(event);

			if (scope.enableRotate) handleTouchStartRotate(event);

		}

		function handleTouchMoveRotate(event) {
			if (event.touches.length == 1) {

				rotateEnd.set(event.touches[0].pageX, event.touches[0].pageY);

			} else {

				var x = 0.5 * (event.touches[0].pageX + event.touches[1].pageX);
				var y = 0.5 * (event.touches[0].pageY + event.touches[1].pageY);

				rotateEnd.set(x, y);

			}

			rotateDelta.subVectors(rotateEnd, rotateStart).multiplyScalar(scope.rotateSpeed);

			var element = scope.domElement;

			rotateLeft(2 * Math.PI * rotateDelta.x / element.clientHeight); // yes, height

			rotateUp(2 * Math.PI * rotateDelta.y / element.clientHeight);

			rotateStart.copy(rotateEnd);

		}

		function handleTouchMovePan(event) {

			if (event.touches.length == 1) {

				panEnd.set(event.touches[0].pageX, event.touches[0].pageY);

			} else {

				var x = 0.5 * (event.touches[0].pageX + event.touches[1].pageX);
				var y = 0.5 * (event.touches[0].pageY + event.touches[1].pageY);

				panEnd.set(x, y);

			}
			panDelta.subVectors(panEnd, panStart).multiplyScalar(scope.panSpeed);

			pan(panDelta.x, panDelta.y);

			panStart.copy(panEnd);

		}

		function handleTouchMoveDolly(event) {

			var dx = event.touches[0].pageX - event.touches[1].pageX;
			var dy = event.touches[0].pageY - event.touches[1].pageY;

			var distance = Math.sqrt(dx * dx + dy * dy);

			dollyEnd.set(0, distance);

			dollyDelta.set(0, Math.pow(dollyEnd.y / dollyStart.y, scope.zoomSpeed));

			dollyOut(dollyDelta.y);

			dollyStart.copy(dollyEnd);

		}

		function handleTouchMoveDollyPan(event) {

			if (scope.enableZoom) handleTouchMoveDolly(event);

			if (scope.enablePan) handleTouchMovePan(event);

		}

		function handleTouchMoveDollyRotate(event) {

			if (scope.enableZoom) handleTouchMoveDolly(event);

			if (scope.enableRotate) handleTouchMoveRotate(event);

		}

		function handleTouchEnd( /*event*/ ) {

			// no-op

		}

		//
		// event handlers - FSM: listen for events and reset state
		//

		function onMouseDown(event) {

			if (scope.enabled === false) return;

			// Prevent the browser from scrolling.
			event.preventDefault();

			// Manually set the focus since calling preventDefault above
			// prevents the browser from setting it automatically.

			scope.domElement.focus ? scope.domElement.focus() : window.focus();

			var mouseAction;

			switch (event.button) {

				case 0:

					mouseAction = scope.mouseButtons.LEFT;
					break;

				case 1:

					mouseAction = scope.mouseButtons.MIDDLE;
					break;

				case 2:

					mouseAction = scope.mouseButtons.RIGHT;
					break;

				default:

					mouseAction = -1;

			}

			switch (mouseAction) {

				case MOUSE.DOLLY:

					if (scope.enableZoom === false) return;

					handleMouseDownDolly(event);

					state = STATE.DOLLY;

					break;

				case MOUSE.ROTATE:

					if (event.ctrlKey || event.metaKey || event.shiftKey) {

						if (scope.enablePan === false) return;

						handleMouseDownPan(event);

						state = STATE.PAN;

					} else {

						if (scope.enableRotate === false) return;

						handleMouseDownRotate(event);

						state = STATE.ROTATE;

					}

					break;

				case MOUSE.PAN:

					if (event.ctrlKey || event.metaKey || event.shiftKey) {

						if (scope.enableRotate === false) return;

						handleMouseDownRotate(event);

						state = STATE.ROTATE;

					} else {

						if (scope.enablePan === false) return;

						handleMouseDownPan(event);

						state = STATE.PAN;

					}

					break;

				default:

					state = STATE.NONE;

			}

			if (state !== STATE.NONE) {

				document.addEventListener('mousemove', onMouseMove, false);
				document.addEventListener('mouseup', onMouseUp, false);

				scope.dispatchEvent(startEvent);

			}

		}

		function onMouseMove(event) {

			if (scope.enabled === false) return;

			event.preventDefault();

			switch (state) {

				case STATE.ROTATE:

					if (scope.enableRotate === false) return;

					handleMouseMoveRotate(event);

					break;

				case STATE.DOLLY:

					if (scope.enableZoom === false) return;

					handleMouseMoveDolly(event);

					break;

				case STATE.PAN:

					if (scope.enablePan === false) return;

					handleMouseMovePan(event);

					break;

			}

		}

		function onMouseUp(event) {

			if (scope.enabled === false) return;

			handleMouseUp(event);

			document.removeEventListener('mousemove', onMouseMove, false);
			document.removeEventListener('mouseup', onMouseUp, false);

			scope.dispatchEvent(endEvent);

			state = STATE.NONE;

		}

		function onMouseWheel(event) {

			if (scope.enabled === false || scope.enableZoom === false || (state !== STATE.NONE && state !== STATE.ROTATE)) return;

			event.preventDefault();
			event.stopPropagation();

			scope.dispatchEvent(startEvent);

			handleMouseWheel(event);

			scope.dispatchEvent(endEvent);

		}

		function onKeyDown(event) {

			if (scope.enabled === false || scope.enableKeys === false || scope.enablePan === false) return;

			handleKeyDown(event);

		}

		function onTouchStart(event) {

			if (scope.enabled === false) return;

			event.preventDefault(); // prevent scrolling

			switch (event.touches.length) {

				case 1:

					switch (scope.touches.ONE) {

						case TOUCH.ROTATE:

							if (scope.enableRotate === false) return;

							handleTouchStartRotate(event);

							state = STATE.TOUCH_ROTATE;

							break;

						case TOUCH.PAN:

							if (scope.enablePan === false) return;

							handleTouchStartPan(event);

							state = STATE.TOUCH_PAN;

							break;

						default:

							state = STATE.NONE;

					}

					break;

				case 2:

					switch (scope.touches.TWO) {

						case TOUCH.DOLLY_PAN:

							if (scope.enableZoom === false && scope.enablePan === false) return;

							handleTouchStartDollyPan(event);

							state = STATE.TOUCH_DOLLY_PAN;

							break;

						case TOUCH.DOLLY_ROTATE:

							if (scope.enableZoom === false && scope.enableRotate === false) return;

							handleTouchStartDollyRotate(event);

							state = STATE.TOUCH_DOLLY_ROTATE;

							break;

						default:

							state = STATE.NONE;

					}

					break;

				default:

					state = STATE.NONE;

			}

			if (state !== STATE.NONE) {

				scope.dispatchEvent(startEvent);

			}

		}

		function onTouchMove(event) {
			if (scope.enabled === false) return;

			event.preventDefault(); // prevent scrolling
			event.stopPropagation();

			switch (state) {

				case STATE.TOUCH_ROTATE:

					if (scope.enableRotate === false) return;

					handleTouchMoveRotate(event);
					scope.update();

					break;

				case STATE.TOUCH_PAN:

					if (scope.enablePan === false) return;

					handleTouchMovePan(event);
					scope.update();

					break;

				case STATE.TOUCH_DOLLY_PAN:

					if (scope.enableZoom === false && scope.enablePan === false) return;

					handleTouchMoveDollyPan(event);
					scope.update();

					break;

				case STATE.TOUCH_DOLLY_ROTATE:

					if (scope.enableZoom === false && scope.enableRotate === false) return;

					handleTouchMoveDollyRotate(event);
					scope.update();

					break;

				default:

					state = STATE.NONE;

			}

		}

		function onTouchEnd(event) {

			if (scope.enabled === false) return;

			handleTouchEnd(event);

			scope.dispatchEvent(endEvent);

			state = STATE.NONE;

		}

		function onContextMenu(event) {

			if (scope.enabled === false) return;

			event.preventDefault();

		}

		//

		scope.domElement.addEventListener('contextmenu', onContextMenu, false);

		scope.domElement.addEventListener('mousedown', onMouseDown, false);
		scope.domElement.addEventListener('wheel', onMouseWheel, false);

		scope.domElement.addEventListener('touchstart', onTouchStart, false);
		scope.domElement.addEventListener('touchend', onTouchEnd, false);
		scope.domElement.addEventListener('touchmove', onTouchMove, false);

		scope.domElement.addEventListener('keydown', onKeyDown, false);

		// make sure element can receive keys.

		if (scope.domElement.tabIndex === -1) {

			scope.domElement.tabIndex = 0;

		}

		// force an update at start

		this.update();

	};

	OrbitControls.prototype = Object.create(EventDispatcher.prototype);
	OrbitControls.prototype.constructor = OrbitControls;


	// This set of controls performs orbiting, dollying (zooming), and panning.
	// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
	// This is very similar to OrbitControls, another set of touch behavior
	//
	//    Orbit - right mouse, or left mouse + ctrl/meta/shiftKey / touch: two-finger rotate
	//    Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
	//    Pan - left mouse, or arrow keys / touch: one-finger move

	var MapControls = function (object, domElement) {

		OrbitControls.call(this, object, domElement);

		this.mouseButtons.LEFT = MOUSE.PAN;
		this.mouseButtons.RIGHT = MOUSE.ROTATE;

		this.touches.ONE = TOUCH.PAN;
		this.touches.TWO = TOUCH.DOLLY_ROTATE;

	};

	MapControls.prototype = Object.create(EventDispatcher.prototype);
	MapControls.prototype.constructor = MapControls;

	return {
		OrbitControls,
		MapControls
	}
}

export default registerOrbit
 

三、效果图

四、总结 three.js画一个图形主要经历如下八个步骤:

1.创建透视相机2.创建场景3.创建光源4.构造辅助网格5.创建加载器,加载模型文件6.创建渲染器,渲染场景7.创建控制器8.循环渲染场景

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022/09/13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章目录
  • 前言
  • 一、Three.js的使用
    • 1.3D模型的绘制
    • 二、3D模型相关js文件
    相关产品与服务
    图像处理
    图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档