特征值和特征向量是矩阵的重要性质,本文记录相关内容。 我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。 实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义。物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量身形暴长;特征值大于0小于1,特征向量身形猛缩;特征值小于0,特征向量缩过了界,反方向到0点那边去了。 关于特征值和特征向量,这里请注意两个亮点。这两个亮点一个是线性不变量的含义,二个是振动的谱含义。
——《线性代数的几何意义》
如果特征值为正,则表示 {\displaystyle v} 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
$$ \begin{array} \mathbf{I A} \mathbf{x}=\mathbf{I} \cdot \lambda \mathbf{x} \\ \mathbf{A} \mathbf{x}=(\lambda I) \mathbf{x} \end{array} $$
$$ \left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] $$
$$ A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] $$