前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Running LuaJIT「建议收藏」

Running LuaJIT「建议收藏」

作者头像
全栈程序员站长
发布2022-11-08 15:34:56
5860
发布2022-11-08 15:34:56
举报
文章被收录于专栏:全栈程序员必看

原文:http://luajit.org/running.html

LuaJIT has only a single stand-alone executable, called luajit on POSIX systems or luajit.exe on Windows. It can be used to run simple Lua statements or whole Lua applications from the command line. It has an interactive mode, too.

Command Line Options

The luajit stand-alone executable is just a slightly modified version of the regular luastand-alone executable. It supports the same basic options, too. luajit -h prints a short list of the available options. Please have a look at the Lua manual for details.

LuaJIT has some additional options:

-b[options] input output

This option saves or lists bytecode. The following additional options are accepted:

  • -l — Only list bytecode.
  • -s — Strip debug info (this is the default).
  • -g — Keep debug info.
  • -n name — Set module name (default: auto-detect from input name)
  • -t type — Set output file type (default: auto-detect from output name).
  • -a arch — Override architecture for object files (default: native).
  • -o os — Override OS for object files (default: native).
  • -e chunk — Use chunk string as input.
  • – (a single minus sign) — Use stdin as input and/or stdout as output.

The output file type is auto-detected from the extension of the output file name:

  • c — C source file, exported bytecode data.
  • h — C header file, static bytecode data.
  • obj or o — Object file, exported bytecode data (OS- and architecture-specific).
  • raw or any other extension — Raw bytecode file (portable).

Notes:

  • See also string.dump() for information on bytecode portability and compatibility.
  • A file in raw bytecode format is auto-detected and can be loaded like any Lua source file. E.g. directly from the command line or with loadfile(), dofile() etc.
  • To statically embed the bytecode of a module in your application, generate an object file and just link it with your application.
  • On most ELF-based systems (e.g. Linux) you need to explicitly export the global symbols when linking your application, e.g. with: -Wl,-E
  • require() tries to load embedded bytecode data from exported symbols (in *.exe or lua51.dll on Windows) and from shared libraries in package.cpath.

Typical usage examples:

代码语言:javascript
复制
luajit -b test.lua test.out                 # Save bytecode to test.out
luajit -bg test.lua test.out                # Keep debug info
luajit -be "print('hello world')" test.out  # Save cmdline script

luajit -bl test.lua                         # List to stdout
luajit -bl test.lua test.txt                # List to test.txt
luajit -ble "print('hello world')"          # List cmdline script

luajit -b test.lua test.obj                 # Generate object file
# Link test.obj with your application and load it with require("test")

-j cmd[=arg[,arg…]]

This option performs a LuaJIT control command or activates one of the loadable extension modules. The command is first looked up in the jit.* library. If no matching function is found, a module named jit.<cmd> is loaded and the start() function of the module is called with the specified arguments (if any). The space between -j and cmd is optional.

Here are the available LuaJIT control commands:

  • -jon — Turns the JIT compiler on (default).
  • -joff — Turns the JIT compiler off (only use the interpreter).
  • -jflush — Flushes the whole cache of compiled code.
  • -jv — Shows verbose information about the progress of the JIT compiler.
  • -jdump — Dumps the code and structures used in various compiler stages.

The -jv and -jdump commands are extension modules written in Lua. They are mainly used for debugging the JIT compiler itself. For a description of their options and output format, please read the comment block at the start of their source. They can be found in the lib directory of the source distribution or installed under the jit directory. By default this is /usr/local/share/luajit-2.0.5/jit on POSIX systems.

-O[level] -O[+]flag -O-flag -Oparam=value

This options allows fine-tuned control of the optimizations used by the JIT compiler. This is mainly intended for debugging LuaJIT itself. Please note that the JIT compiler is extremely fast (we are talking about the microsecond to millisecond range). Disabling optimizations doesn’t have any visible impact on its overhead, but usually generates code that runs slower.

The first form sets an optimization level — this enables a specific mix of optimization flags. -O0 turns off all optimizations and higher numbers enable more optimizations. Omitting the level (i.e. just -O) sets the default optimization level, which is -O3 in the current version.

The second form adds or removes individual optimization flags. The third form sets a parameter for the VM or the JIT compiler to a specific value.

You can either use this option multiple times (like -Ocse -O-dce -Ohotloop=10) or separate several settings with a comma (like -O+cse,-dce,hotloop=10). The settings are applied from left to right and later settings override earlier ones. You can freely mix the three forms, but note that setting an optimization level overrides all earlier flags.

Here are the available flags and at what optimization levels they are enabled:

Flag

-O1

-O2

-O3

fold

Constant Folding, Simplifications and Reassociation

cse

Common-Subexpression Elimination

dce

Dead-Code Elimination

narrow

Narrowing of numbers to integers

loop

Loop Optimizations (code hoisting)

fwd

Load Forwarding (L2L) and Store Forwarding (S2L)

dse

Dead-Store Elimination

abc

Array Bounds Check Elimination

sink

Allocation/Store Sinking

fuse

Fusion of operands into instructions

Here are the parameters and their default settings:

Parameter

Default

maxtrace

1000

Max. number of traces in the cache

maxrecord

4000

Max. number of recorded IR instructions

maxirconst

500

Max. number of IR constants of a trace

maxside

100

Max. number of side traces of a root trace

maxsnap

500

Max. number of snapshots for a trace

hotloop

56

Number of iterations to detect a hot loop or hot call

hotexit

10

Number of taken exits to start a side trace

tryside

4

Number of attempts to compile a side trace

instunroll

4

Max. unroll factor for instable loops

loopunroll

15

Max. unroll factor for loop ops in side traces

callunroll

3

Max. unroll factor for pseudo-recursive calls

recunroll

2

Min. unroll factor for true recursion

sizemcode

32

Size of each machine code area in KBytes (Windows: 64K)

maxmcode

512

Max. total size of all machine code areas in KBytes

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/185188.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月6日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Command Line Options
    • -b[options] input output
      • -j cmd[=arg[,arg…]]
        • -O[level] -O[+]flag -O-flag -Oparam=value
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档