前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >10v转16v_颜色代码转rgb

10v转16v_颜色代码转rgb

作者头像
全栈程序员站长
发布2022-11-08 16:47:43
7980
发布2022-11-08 16:47:43
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

/* NV12ToARGB color space conversion CUDA kernel

This sample uses CUDA to perform a simple NV12 (YUV 4:2:0 planar) source and converts to output in ARGB format */

#include <stdio.h> #include <stdlib.h> #include <string.h> #include “cudaProcessFrame.h”

__constant__ uint32 constAlpha;

#define MUL(x,y) (x*y) __constant__ float constHueColorSpaceMat[9];

__device__ void YUV2RGB(uint32 *yuvi, float *red, float *green, float *blue) { float luma, chromaCb, chromaCr;

// Prepare for hue adjustment luma = (float)yuvi[0]; chromaCb = (float)((int32)yuvi[1] – 512.0f); chromaCr = (float)((int32)yuvi[2] – 512.0f);

// Convert YUV To RGB with hue adjustment *red = MUL(luma, constHueColorSpaceMat[0]) + MUL(chromaCb, constHueColorSpaceMat[1]) + MUL(chromaCr, constHueColorSpaceMat[2]); *green= MUL(luma, constHueColorSpaceMat[3]) + MUL(chromaCb, constHueColorSpaceMat[4]) + MUL(chromaCr, constHueColorSpaceMat[5]); *blue = MUL(luma, constHueColorSpaceMat[6]) + MUL(chromaCb, constHueColorSpaceMat[7]) + MUL(chromaCr, constHueColorSpaceMat[8]); }

__device__ uint32 RGBAPACK_8bit(float red, float green, float blue, uint32 alpha) { uint32 ARGBpixel = 0;

// Clamp final 10 bit results red = min(max(red, 0.0f), 255.0f); green = min(max(green, 0.0f), 255.0f); blue = min(max(blue, 0.0f), 255.0f);

// Convert to 8 bit unsigned integers per color component ARGBpixel = (((uint32)blue) | (((uint32)green) << 8) | (((uint32)red) << 16) | (uint32)alpha);

return ARGBpixel; }

__device__ uint32 RGBAPACK_10bit(float red, float green, float blue, uint32 alpha) { uint32 ARGBpixel = 0;

// Clamp final 10 bit results red = min(max(red, 0.0f), 1023.f); green = min(max(green, 0.0f), 1023.f); blue = min(max(blue, 0.0f), 1023.f);

// Convert to 8 bit unsigned integers per color component ARGBpixel = (((uint32)blue >> 2) | (((uint32)green >> 2) << 8) | (((uint32)red >> 2) << 16) | (uint32)alpha);

return ARGBpixel; }

// CUDA kernel for outputing the final ARGB output from NV12; extern “C” __global__ void Passthru_drvapi(uint32 *srcImage, size_t nSourcePitch, uint32 *dstImage, size_t nDestPitch, uint32 width, uint32 height) { int32 x, y; uint32 yuv101010Pel[2]; uint32 processingPitch = ((width) + 63) & ~63; uint32 dstImagePitch = nDestPitch >> 2; uint8 *srcImageU8 = (uint8 *)srcImage;

processingPitch = nSourcePitch;

// Pad borders with duplicate pixels, and we multiply by 2 because we process 2 pixels per thread x = blockIdx.x * (blockDim.x << 1) + (threadIdx.x << 1); y = blockIdx.y * blockDim.y + threadIdx.y;

if (x >= width) return; //x = width – 1;

if (y >= height) return; // y = height – 1;

// Read 2 Luma components at a time, so we don’t waste processing since CbCr are decimated this way. // if we move to texture we could read 4 luminance values yuv101010Pel[0] = (srcImageU8[y * processingPitch + x ]); yuv101010Pel[1] = (srcImageU8[y * processingPitch + x + 1]);

// this steps performs the color conversion float luma[2];

luma[0] = (yuv101010Pel[0] & 0x00FF); luma[1] = (yuv101010Pel[1] & 0x00FF);

// Clamp the results to RGBA dstImage[y * dstImagePitch + x ] = RGBAPACK_8bit(luma[0], luma[0], luma[0], constAlpha); dstImage[y * dstImagePitch + x + 1 ] = RGBAPACK_8bit(luma[1], luma[1], luma[1], constAlpha); }

// CUDA kernel for outputing the final ARGB output from NV12; extern “C” __global__ void NV12ToARGB_drvapi(uint32 *srcImage, size_t nSourcePitch, uint32 *dstImage, size_t nDestPitch, uint32 width, uint32 height) { int32 x, y; uint32 yuv101010Pel[2]; uint32 processingPitch = ((width) + 63) & ~63; uint32 dstImagePitch = nDestPitch >> 2; uint8 *srcImageU8 = (uint8 *)srcImage;

processingPitch = nSourcePitch;

// Pad borders with duplicate pixels, and we multiply by 2 because we process 2 pixels per thread x = blockIdx.x * (blockDim.x << 1) + (threadIdx.x << 1); y = blockIdx.y * blockDim.y + threadIdx.y;

if (x >= width) return; //x = width – 1;

if (y >= height) return; // y = height – 1;

// Read 2 Luma components at a time, so we don’t waste processing since CbCr are decimated this way. // if we move to texture we could read 4 luminance values yuv101010Pel[0] = (srcImageU8[y * processingPitch + x ]) << 2; yuv101010Pel[1] = (srcImageU8[y * processingPitch + x + 1]) << 2;

uint32 chromaOffset = processingPitch * height; int32 y_chroma = y >> 1;

if (y & 1) // odd scanline ? { uint32 chromaCb; uint32 chromaCr;

chromaCb = srcImageU8[chromaOffset + y_chroma * processingPitch + x ]; chromaCr = srcImageU8[chromaOffset + y_chroma * processingPitch + x + 1];

if (y_chroma < ((height >> 1) – 1)) // interpolate chroma vertically { chromaCb = (chromaCb + srcImageU8[chromaOffset + (y_chroma + 1) * processingPitch + x ] + 1) >> 1; chromaCr = (chromaCr + srcImageU8[chromaOffset + (y_chroma + 1) * processingPitch + x + 1] + 1) >> 1; }

yuv101010Pel[0] |= (chromaCb << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[0] |= (chromaCr << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2));

yuv101010Pel[1] |= (chromaCb << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[1] |= (chromaCr << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2)); } else { yuv101010Pel[0] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x ] << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[0] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x + 1] << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2));

yuv101010Pel[1] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x ] << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[1] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x + 1] << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2)); }

// this steps performs the color conversion uint32 yuvi[6]; float red[2], green[2], blue[2];

yuvi[0] = (yuv101010Pel[0] & COLOR_COMPONENT_MASK); yuvi[1] = ((yuv101010Pel[0] >> COLOR_COMPONENT_BIT_SIZE) & COLOR_COMPONENT_MASK); yuvi[2] = ((yuv101010Pel[0] >> (COLOR_COMPONENT_BIT_SIZE << 1)) & COLOR_COMPONENT_MASK);

yuvi[3] = (yuv101010Pel[1] & COLOR_COMPONENT_MASK); yuvi[4] = ((yuv101010Pel[1] >> COLOR_COMPONENT_BIT_SIZE) & COLOR_COMPONENT_MASK); yuvi[5] = ((yuv101010Pel[1] >> (COLOR_COMPONENT_BIT_SIZE << 1)) & COLOR_COMPONENT_MASK);

// YUV to RGB Transformation conversion YUV2RGB(&yuvi[0], &red[0], &green[0], &blue[0]); YUV2RGB(&yuvi[3], &red[1], &green[1], &blue[1]);

// Clamp the results to RGBA dstImage[y * dstImagePitch + x ] = RGBAPACK_10bit(red[0], green[0], blue[0], constAlpha); dstImage[y * dstImagePitch + x + 1 ] = RGBAPACK_10bit(red[1], green[1], blue[1], constAlpha); }

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年9月24日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档