/* NV12ToARGB color space conversion CUDA kernel
This sample uses CUDA to perform a simple NV12 (YUV 4:2:0 planar) source and converts to output in ARGB format */
#include <stdio.h> #include <stdlib.h> #include <string.h> #include “cudaProcessFrame.h”
__constant__ uint32 constAlpha;
#define MUL(x,y) (x*y) __constant__ float constHueColorSpaceMat[9];
__device__ void YUV2RGB(uint32 *yuvi, float *red, float *green, float *blue) { float luma, chromaCb, chromaCr;
// Prepare for hue adjustment luma = (float)yuvi[0]; chromaCb = (float)((int32)yuvi[1] – 512.0f); chromaCr = (float)((int32)yuvi[2] – 512.0f);
// Convert YUV To RGB with hue adjustment *red = MUL(luma, constHueColorSpaceMat[0]) + MUL(chromaCb, constHueColorSpaceMat[1]) + MUL(chromaCr, constHueColorSpaceMat[2]); *green= MUL(luma, constHueColorSpaceMat[3]) + MUL(chromaCb, constHueColorSpaceMat[4]) + MUL(chromaCr, constHueColorSpaceMat[5]); *blue = MUL(luma, constHueColorSpaceMat[6]) + MUL(chromaCb, constHueColorSpaceMat[7]) + MUL(chromaCr, constHueColorSpaceMat[8]); }
__device__ uint32 RGBAPACK_8bit(float red, float green, float blue, uint32 alpha) { uint32 ARGBpixel = 0;
// Clamp final 10 bit results red = min(max(red, 0.0f), 255.0f); green = min(max(green, 0.0f), 255.0f); blue = min(max(blue, 0.0f), 255.0f);
// Convert to 8 bit unsigned integers per color component ARGBpixel = (((uint32)blue) | (((uint32)green) << 8) | (((uint32)red) << 16) | (uint32)alpha);
return ARGBpixel; }
__device__ uint32 RGBAPACK_10bit(float red, float green, float blue, uint32 alpha) { uint32 ARGBpixel = 0;
// Clamp final 10 bit results red = min(max(red, 0.0f), 1023.f); green = min(max(green, 0.0f), 1023.f); blue = min(max(blue, 0.0f), 1023.f);
// Convert to 8 bit unsigned integers per color component ARGBpixel = (((uint32)blue >> 2) | (((uint32)green >> 2) << 8) | (((uint32)red >> 2) << 16) | (uint32)alpha);
return ARGBpixel; }
// CUDA kernel for outputing the final ARGB output from NV12; extern “C” __global__ void Passthru_drvapi(uint32 *srcImage, size_t nSourcePitch, uint32 *dstImage, size_t nDestPitch, uint32 width, uint32 height) { int32 x, y; uint32 yuv101010Pel[2]; uint32 processingPitch = ((width) + 63) & ~63; uint32 dstImagePitch = nDestPitch >> 2; uint8 *srcImageU8 = (uint8 *)srcImage;
processingPitch = nSourcePitch;
// Pad borders with duplicate pixels, and we multiply by 2 because we process 2 pixels per thread x = blockIdx.x * (blockDim.x << 1) + (threadIdx.x << 1); y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= width) return; //x = width – 1;
if (y >= height) return; // y = height – 1;
// Read 2 Luma components at a time, so we don’t waste processing since CbCr are decimated this way. // if we move to texture we could read 4 luminance values yuv101010Pel[0] = (srcImageU8[y * processingPitch + x ]); yuv101010Pel[1] = (srcImageU8[y * processingPitch + x + 1]);
// this steps performs the color conversion float luma[2];
luma[0] = (yuv101010Pel[0] & 0x00FF); luma[1] = (yuv101010Pel[1] & 0x00FF);
// Clamp the results to RGBA dstImage[y * dstImagePitch + x ] = RGBAPACK_8bit(luma[0], luma[0], luma[0], constAlpha); dstImage[y * dstImagePitch + x + 1 ] = RGBAPACK_8bit(luma[1], luma[1], luma[1], constAlpha); }
// CUDA kernel for outputing the final ARGB output from NV12; extern “C” __global__ void NV12ToARGB_drvapi(uint32 *srcImage, size_t nSourcePitch, uint32 *dstImage, size_t nDestPitch, uint32 width, uint32 height) { int32 x, y; uint32 yuv101010Pel[2]; uint32 processingPitch = ((width) + 63) & ~63; uint32 dstImagePitch = nDestPitch >> 2; uint8 *srcImageU8 = (uint8 *)srcImage;
processingPitch = nSourcePitch;
// Pad borders with duplicate pixels, and we multiply by 2 because we process 2 pixels per thread x = blockIdx.x * (blockDim.x << 1) + (threadIdx.x << 1); y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= width) return; //x = width – 1;
if (y >= height) return; // y = height – 1;
// Read 2 Luma components at a time, so we don’t waste processing since CbCr are decimated this way. // if we move to texture we could read 4 luminance values yuv101010Pel[0] = (srcImageU8[y * processingPitch + x ]) << 2; yuv101010Pel[1] = (srcImageU8[y * processingPitch + x + 1]) << 2;
uint32 chromaOffset = processingPitch * height; int32 y_chroma = y >> 1;
if (y & 1) // odd scanline ? { uint32 chromaCb; uint32 chromaCr;
chromaCb = srcImageU8[chromaOffset + y_chroma * processingPitch + x ]; chromaCr = srcImageU8[chromaOffset + y_chroma * processingPitch + x + 1];
if (y_chroma < ((height >> 1) – 1)) // interpolate chroma vertically { chromaCb = (chromaCb + srcImageU8[chromaOffset + (y_chroma + 1) * processingPitch + x ] + 1) >> 1; chromaCr = (chromaCr + srcImageU8[chromaOffset + (y_chroma + 1) * processingPitch + x + 1] + 1) >> 1; }
yuv101010Pel[0] |= (chromaCb << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[0] |= (chromaCr << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2));
yuv101010Pel[1] |= (chromaCb << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[1] |= (chromaCr << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2)); } else { yuv101010Pel[0] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x ] << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[0] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x + 1] << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2));
yuv101010Pel[1] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x ] << (COLOR_COMPONENT_BIT_SIZE + 2)); yuv101010Pel[1] |= ((uint32)srcImageU8[chromaOffset + y_chroma * processingPitch + x + 1] << ((COLOR_COMPONENT_BIT_SIZE << 1) + 2)); }
// this steps performs the color conversion uint32 yuvi[6]; float red[2], green[2], blue[2];
yuvi[0] = (yuv101010Pel[0] & COLOR_COMPONENT_MASK); yuvi[1] = ((yuv101010Pel[0] >> COLOR_COMPONENT_BIT_SIZE) & COLOR_COMPONENT_MASK); yuvi[2] = ((yuv101010Pel[0] >> (COLOR_COMPONENT_BIT_SIZE << 1)) & COLOR_COMPONENT_MASK);
yuvi[3] = (yuv101010Pel[1] & COLOR_COMPONENT_MASK); yuvi[4] = ((yuv101010Pel[1] >> COLOR_COMPONENT_BIT_SIZE) & COLOR_COMPONENT_MASK); yuvi[5] = ((yuv101010Pel[1] >> (COLOR_COMPONENT_BIT_SIZE << 1)) & COLOR_COMPONENT_MASK);
// YUV to RGB Transformation conversion YUV2RGB(&yuvi[0], &red[0], &green[0], &blue[0]); YUV2RGB(&yuvi[3], &red[1], &green[1], &blue[1]);
// Clamp the results to RGBA dstImage[y * dstImagePitch + x ] = RGBAPACK_10bit(red[0], green[0], blue[0], constAlpha); dstImage[y * dstImagePitch + x + 1 ] = RGBAPACK_10bit(red[1], green[1], blue[1], constAlpha); }
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。