前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【强化学习】Q-Learning算法详解

【强化学习】Q-Learning算法详解

作者头像
全栈程序员站长
发布2022-11-09 16:33:11
2.2K0
发布2022-11-09 16:33:11
举报
文章被收录于专栏:全栈程序员必看

【强化学习】Q-Learning详解

https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-1-general-rl/ 莫凡大神的有趣的强化学习视频通俗易懂

发现了很多RL资料搬砖过来,刚入门的可以用得上

David Silver 博士的 UCL 公开课:http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html DeepMind 和 UCL 的DL、RL课程:https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs Sergey Levine 的DRL课程:http://rail.eecs.berkeley.edu/deeprlcourse/ OpenAI 的 Spinning Up in Deep RL:https://blog.openai.com/spinning-up-in-deep-rl/ 关于深度强化学习良心paper:https://arxiv.org/abs/1810.06339

1、算法思想

QLearning是强化学习算法中value-based的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 动作a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取能够获得最大的收益的动作。

Q-Table

a1

a2

s1

q(s1,a1)

q(s1,a2)

s2

q(s2,a1)

q(s2,a2)

s3

q(s3,a1)

q(s3,a2)

2、公式推导

举个例子如图有一个GridWorld的游戏从起点出发到达终点为胜利掉进陷阱为失败。智能体(Agent)、环境状态(environment)、奖励(reward)、动作(action)可以将问题抽象成一个马尔科夫决策过程,我们在每个格子都算是一个状态 s t s_t st​ , π(a|s)在s状态下采取动作a策略 。 P(s’|s,a)也可以写成 P s s ′ a P_{ss’}^a Pss′a​为在s状态下选择a动作转换到下一个状态s’的概率。R(s’|s,a)表示在s状态下采取a动作转移到s’的奖励reward,我们的目的很明确就是找到一条能够到达终点获得最大奖赏的策略。

这里写图片描述
这里写图片描述

所以目标就是求出累计奖励最大的策略的期望:

Goal: max ⁡ π E [ ∑ t = 0 H γ t R ( S t , A t , S t + 1 ) ∣ π ] \max_πE[\sum_{t=0}^{H}γ^tR(S_t,A_t,S_{t+1}) | π] maxπ​E[∑t=0H​γtR(St​,At​,St+1​)∣π]

Qlearning的主要优势就是使用了时间差分法TD(融合了蒙特卡洛和动态规划)能够进行离线学习, 使用bellman方程可以对马尔科夫过程求解最优策略

贝尔曼方程

通过bellman方程求解马尔科夫决策过程的最佳决策序列,状态值函数 V π ( s ) V_\pi(s) Vπ​(s)可以评价当前状态的好坏,每个状态的值不仅由当前状态决定还要由后面的状态决定,所以状态的累计奖励求期望就可得出当前s的状态值函数V(s)。bellman方程如下

V π ( s ) = E ( U t ∣ S t = s ) V_π(s) = E(U_t|S_t = s) Vπ​(s)=E(Ut​∣St​=s) V π ( s ) = E π [ R t + 1 + γ [ R t + 2 + γ [ . . . . . . . ] ] ∣ S t = s ] V_π(s) = E_π[R_{t+1}+γ[R_{t+2} + γ[…….]]|S_t = s] Vπ​(s)=Eπ​[Rt+1​+γ[Rt+2​+γ[.......]]∣St​=s] V π ( s ) = E π [ R t + 1 + γ V ( s ′ ) ∣ S t = s ] V_π(s) = E_π[R_{t+1}+γV(s’)|S_t = s] Vπ​(s)=Eπ​[Rt+1​+γV(s′)∣St​=s]

最优累计期望可用 V ∗ ( s ) V^*(s) V∗(s)表示,可知最优值函数就是 V ∗ ( s ) = m a x π V π ( s ) V^*(s)=max_πV_\pi(s) V∗(s)=maxπ​Vπ​(s) V ∗ ( s ) = max ⁡ π E [ ∑ t = 0 H γ t R ( S t , A t , S t + 1 ) ∣ π , s 0 = s ] V^*(s)=\max_πE[\sum_{t=0}^{H}γ^tR(S_t,A_t,S_{t+1}) | π,s_0=s] V∗(s)=maxπ​E[∑t=0H​γtR(St​,At​,St+1​)∣π,s0​=s]

Q(s,a)状态动作值函数 q π ( s , a ) = E π [ r t + 1 + γ r t + 2 + γ 2 r t + 3 + . . . . ∣ A t = a , S t = s ] q_π(s,a) = E_π[r_{t+1}+γr_{t+2}+γ^2r_{t+3}+….|A_t=a,S_t=s] qπ​(s,a)=Eπ​[rt+1​+γrt+2​+γ2rt+3​+....∣At​=a,St​=s] q π ( s , a ) = E π [ G t ∣ A t = a , S t = s ] q_π(s,a) = E_π[G_t|A_t=a,S_t=s] qπ​(s,a)=Eπ​[Gt​∣At​=a,St​=s] 其中 G t G_t Gt​是t时刻开始的总折扣奖励,从这里我们能看出来 γ衰变值对Q函数的影响,γ越接近于1代表它越有远见会着重考虑后续状态的的价值,当γ接近0的时候就会变得近视只考虑当前的利益的影响。所以从0到1,算法就会越来越会考虑后续回报的影响。 q π ( s , a ) = E π [ R t + 1 + γ q π ( S t + 1 , A t + 1 ) ∣ A t = a , S t = s ] q_π(s,a) = E_π[R_{t+1}+γq_π(S_{t+1},A_{t+1})|A_t=a,S_t=s] qπ​(s,a)=Eπ​[Rt+1​+γqπ​(St+1​,At+1​)∣At​=a,St​=s]

最优价值动作函数 Q ∗ ( s , a ) = m a x π Q ∗ ( s , a ) Q^*(s,a)=max_\pi Q^*(s,a) Q∗(s,a)=maxπ​Q∗(s,a),打开期望如下 Q ∗ ( s , a ) = ∑ s ′ P ( s ′ ∣ s , a ) ( R ( s , a , s ′ ) + γ max ⁡ a ′ Q ∗ ( s ′ , a ′ ) ) Q^*(s,a)=\sum_{s’} P(s’|s,a)(R(s,a,s’)+γ\max_{a’}Q^*(s’,a’)) Q∗(s,a)=∑s′​P(s′∣s,a)(R(s,a,s′)+γmaxa′​Q∗(s′,a′))

Bellman方程实际上就是价值动作函数的转换关系

V π ( s ) = ∑ a ∈ A π ( a ∣ s ) q π ( s , a ) V_π(s) = \sum_{a∈A}π(a|s)q_π(s,a) Vπ​(s)=∑a∈A​π(a∣s)qπ​(s,a) q π ( s , a ) = R s a + γ ∑ s ′ ∈ S P s s ′ a V π ( s ′ ) q_π(s,a) = R_s^a + γ\sum_{s’∈S}P_{ss’}^aV_π(s’) qπ​(s,a)=Rsa​+γ∑s′∈S​Pss′a​Vπ​(s′) V π ( s ) = ∑ a ′ ∈ A π ( a ∣ s ) [ R s a + γ ∑ s ′ P s s ′ a V π ( s ′ ) ] V_π(s)=\sum_{a’∈A}π(a|s)[R_s^a+γ\sum_{s’}P_{ss’}^aV_π(s’)] Vπ​(s)=∑a′∈A​π(a∣s)[Rsa​+γ∑s′​Pss′a​Vπ​(s′)]

Q值迭代公式
Q值迭代公式

根据下图更直观的了解V(s)与Q(s,a)的关系

V(s)与Q(s,a)的关系
V(s)与Q(s,a)的关系
时间差分法 https://blog.csdn.net/qq_30615903/article/details/80821061

时间差分方法结合了蒙特卡罗的采样方法和动态规划方法的bootstrapping(利用后继状态的值函数估计当前值函数)使得他可以适用于model-free的算法并且是单步更新,速度更快。值函数计算方式如下

V ( s ) ← V ( s ) + α ( R t + 1 + γ V ( s ′ ) − V ( s ) ) V(s)←V(s)+\alpha (R_{t+1}+\gamma V(s’)-V(s)) V(s)←V(s)+α(Rt+1​+γV(s′)−V(s))

其中 R t + 1 + γ V ( s ′ ) R_{t+1}+\gamma V(s’) Rt+1​+γV(s′)被称为TD目标, δ t = R t + 1 + γ V ( s ′ ) − V ( s ) \delta_t=R_{t+1}+\gamma V(s’)-V(s) δt​=Rt+1​+γV(s′)−V(s) 称为TD偏差。

3、更新公式

根据以上推导可以对Q值进行计算,所以有了Q值我们就可以进行学习,也就是Q-table的更新过程,其中α为学习率γ为奖励性衰变系数,采用时间差分法的方法进行更新。

Q ( s , a ) ← Q ( s , a ) + α [ r + γ m a x a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s,a) ← Q(s,a) + α[r + γmax_{a’}Q(s’,a’)-Q(s,a)] Q(s,a)←Q(s,a)+α[r+γmaxa′​Q(s′,a′)−Q(s,a)]

上式就是Q-learning更新的公式,根据下一个状态s’中选取最大的 Q ( s ′ , a ′ ) Q(s’,a’) Q(s′,a′)值乘以衰变γ加上真实回报值最为Q现实,而根据过往Q表里面的Q(s,a)作为Q估计。

在这里插入图片描述
在这里插入图片描述
这里写图片描述
这里写图片描述

4、实现代码

代码来自网上各路大神的源码,非原创,据反映没图片跑不通,所以建了个github,https://github.com/xshura/reinforcement_learning Q-Learning agent

代码语言:javascript
复制
# -*- coding: utf-8 -*-
import random
from environment import Env
from collections import defaultdict


class QLearningAgent:
    def __init__(self, actions):
        # actions = [0, 1, 2, 3]
        self.actions = actions
        self.learning_rate = 0.01
        self.discount_factor = 0.9
        self.epsilon = 0.1
        self.q_table = defaultdict(lambda: [0.0, 0.0, 0.0, 0.0])

    # 采样 <s, a, r, s'>
    def learn(self, state, action, reward, next_state):
        current_q = self.q_table[state][action]
        # 贝尔曼方程更新
        new_q = reward + self.discount_factor * max(self.q_table[next_state])
        self.q_table[state][action] += self.learning_rate * (new_q - current_q)

    # 从Q-table中选取动作
    def get_action(self, state):
        if np.random.rand() < self.epsilon:
            # 贪婪策略随机探索动作
            action = np.random.choice(self.actions)
        else:
            # 从q表中选择
            state_action = self.q_table[state]
            action = self.arg_max(state_action)
        return action

    @staticmethod
    def arg_max(state_action):
        max_index_list = []
        max_value = state_action[0]
        for index, value in enumerate(state_action):
            if value > max_value:
                max_index_list.clear()
                max_value = value
                max_index_list.append(index)
            elif value == max_value:
                max_index_list.append(index)
        return random.choice(max_index_list)


if __name__ == "__main__":
    env = Env()
    agent = QLearningAgent(actions=list(range(env.n_actions)))
    for episode in range(1000):
        state = env.reset()
        while True:
            env.render()
            # agent产生动作
            action = agent.get_action(str(state))
            next_state, reward, done = env.step(action)
            # 更新Q表
            agent.learn(str(state), action, reward, str(next_state))
            state = next_state
            env.print_value_all(agent.q_table)
            # 当到达终点就终止游戏开始新一轮训练
            if done:
                break

环境部分

代码语言:javascript
复制
import time
import numpy as np
import tkinter as tk
from PIL import ImageTk, Image
np.random.seed(1)
PhotoImage = ImageTk.PhotoImage
UNIT = 100
HEIGHT = 5
WIDTH = 5
class Env(tk.Tk):
def __init__(self):
super(Env, self).__init__()
self.action_space = ['u', 'd', 'l', 'r']
self.n_actions = len(self.action_space)
self.title('Q Learning')
self.geometry('{0}x{1}'.format(HEIGHT * UNIT, HEIGHT * UNIT))
self.shapes = self.load_images()
self.canvas = self._build_canvas()
self.texts = []
def _build_canvas(self):
canvas = tk.Canvas(self, bg='white',
height=HEIGHT * UNIT,
width=WIDTH * UNIT)
# create grids
for c in range(0, WIDTH * UNIT, UNIT):  # 0~400 by 80
x0, y0, x1, y1 = c, 0, c, HEIGHT * UNIT
canvas.create_line(x0, y0, x1, y1)
for r in range(0, HEIGHT * UNIT, UNIT):  # 0~400 by 80
x0, y0, x1, y1 = 0, r, HEIGHT * UNIT, r
canvas.create_line(x0, y0, x1, y1)
# add img to canvas
self.rectangle = canvas.create_image(50, 50, image=self.shapes[0])
self.triangle1 = canvas.create_image(250, 150, image=self.shapes[1])
self.triangle2 = canvas.create_image(150, 250, image=self.shapes[1])
self.circle = canvas.create_image(250, 250, image=self.shapes[2])
# pack all
canvas.pack()
return canvas
def load_images(self):
rectangle = PhotoImage(
Image.open("../img/rectangle.png").resize((65, 65)))
triangle = PhotoImage(
Image.open("../img/triangle.png").resize((65, 65)))
circle = PhotoImage(
Image.open("../img/circle.png").resize((65, 65)))
return rectangle, triangle, circle
def text_value(self, row, col, contents, action, font='Helvetica', size=10,
style='normal', anchor="nw"):
if action == 0:
origin_x, origin_y = 7, 42
elif action == 1:
origin_x, origin_y = 85, 42
elif action == 2:
origin_x, origin_y = 42, 5
else:
origin_x, origin_y = 42, 77
x, y = origin_y + (UNIT * col), origin_x + (UNIT * row)
font = (font, str(size), style)
text = self.canvas.create_text(x, y, fill="black", text=contents,
font=font, anchor=anchor)
return self.texts.append(text)
def print_value_all(self, q_table):
for i in self.texts:
self.canvas.delete(i)
self.texts.clear()
for i in range(HEIGHT):
for j in range(WIDTH):
for action in range(0, 4):
state = [i, j]
if str(state) in q_table.keys():
temp = q_table[str(state)][action]
self.text_value(j, i, round(temp, 2), action)
def coords_to_state(self, coords):
x = int((coords[0] - 50) / 100)
y = int((coords[1] - 50) / 100)
return [x, y]
def state_to_coords(self, state):
x = int(state[0] * 100 + 50)
y = int(state[1] * 100 + 50)
return [x, y]
def reset(self):
self.update()
time.sleep(0.5)
x, y = self.canvas.coords(self.rectangle)
self.canvas.move(self.rectangle, UNIT / 2 - x, UNIT / 2 - y)
self.render()
# return observation
return self.coords_to_state(self.canvas.coords(self.rectangle))
def step(self, action):
state = self.canvas.coords(self.rectangle)
base_action = np.array([0, 0])
self.render()
if action == 0:  # up
if state[1] > UNIT:
base_action[1] -= UNIT
elif action == 1:  # down
if state[1] < (HEIGHT - 1) * UNIT:
base_action[1] += UNIT
elif action == 2:  # left
if state[0] > UNIT:
base_action[0] -= UNIT
elif action == 3:  # right
if state[0] < (WIDTH - 1) * UNIT:
base_action[0] += UNIT
# 移动
self.canvas.move(self.rectangle, base_action[0], base_action[1])
self.canvas.tag_raise(self.rectangle)
next_state = self.canvas.coords(self.rectangle)
# 判断得分条件
if next_state == self.canvas.coords(self.circle):
reward = 100
done = True
elif next_state in [self.canvas.coords(self.triangle1),
self.canvas.coords(self.triangle2)]:
reward = -100
done = True
else:
reward = 0
done = False
next_state = self.coords_to_state(next_state)
return next_state, reward, done
# 渲染环境
def render(self):
time.sleep(0.03)
self.update()

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/186142.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月4日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 【强化学习】Q-Learning详解
    • 1、算法思想
      • 2、公式推导
        • 3、更新公式
          • 4、实现代码
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档