学习
实践
活动
专区
工具
TVP
写文章
专栏首页JAVA开发专栏Flink CDC 新一代数据集成框架
原创

Flink CDC 新一代数据集成框架

前言:

主要讲解了技术原理,入门与生产实践,主要功能:全增量一体化数据集成、实时数据入库入仓、最详细的教程。Flink CDC 是Apache Flink的一个重要组件,主要使用了CDC技术从各种数据库中获取变更流并接入到Flink中,Apache Flink作为一款非常优秀的流处理引擎,其SQL API又提供了强大的流式计算能力,因此结合Flink CDC能带来非常广阔的应用场景。例如,Flink CDC可以代替传统的Data X和Canal工具作为实时数据同步,将数据库的全量和增量数据同步到消息队列和数据仓库中。也可以做实时数据集成,将数据库数据实时入湖入仓。还可以做实时物化视图,通过SQL对数据做实时的关联、打宽、聚合,并将物化结果写入到数据湖仓中。

作为新一代的数据集成框架,Flink CDC希望解决的问题很简单:成为数据从源头连接到数据仓库的管道,屏蔽过程中的一切复杂问题,让用户专注于数据分析,但是为了让数据集成变得简单,其中的难点仍然很多,比如说百亿数据如何高效入湖入仓?千表数据如何稳定入湖入仓,以及如何一键式的数据同步处理,表结构频繁变更 ,如何自动同步表结构变更到湖和仓中?本文将作为一一进行介绍

CDC概念

CDC的全称是Change Data Capture,在广义的概念上,只要是能够捕获数据变更的技术,都可以成为是CDC。目前通常描述的CDC技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术,CDC的应用非常广泛。

  1. 数据迁移:常用于数据库备份、容灾等
  2. 数据分发:将一个数据源分发给多个下游,常用语业务的解耦、微服务的使用场景
  3. 数据采集:将分散异构的数据源集成到数据仓中,消除数据孤岛,便于后续的分析,监控

目前主要的CDC有两种:

  1. 基于查询的CDC
    1. 离线调度查询作业,批处理。依赖表中的更新时间字段,每次执行查询去捕获表中的最新数据
    2. 无法捕获的是删除事件,从而无法保证数据一致性问题
    3. 无法保障实时性,基于离线调度存在天然的延迟
  2. 基于日志的CDC
    1. 实时消费日志,流处理。比如说MySQL里面的BinLog日志完整记录数据库中的数据变更,可以把binLog文件作为流的数据源
    2. 保障数据一致性,因为binLog文件中包含了所有历史变更明细
    3. 保障实时性,因为类似binLog的日志文件可以流式消费的,提供的实时数据

常见开源CDC方案比较

从这张图可以看出来,在数据加工能力上,CDC工具是够能够方便地对数据做一些清洗、过滤、聚合,甚至关联拓宽。Flink CDC依托强大的Flink SQL流式计算能力,可以非常方便对数据进行加工。Apache Flink的一个组件具有非常灵活的水平扩展能力。而DataX 和Canal是单体架构,在大数据场景下容易面临性能瓶颈的问题。

从生态方面,这个是上下游存储的支持。Flink CDC上下游非常丰富,支持对接MySQL、Post供热SQL等数据源,还支持写入到HBase、Kafka、Hudi等各种存储系统中,也支持灵活的自定义connector

Flink有两个基础概念,Dynamic Table和Changelog Stream

  1. Dynamic Table就是Flink SQL定义的动态表,动态表和流的概念是对等的,意思是流可以转换为动态表,动态表也可以转换成流
  2. 在Flink SQL中数据从 一个算子流向另一个算子时都是以Changelog Stream的形式,任意时刻的Changelog Stream可以翻译为一个表,也可以翻译成一个流

MySql中的表和binlog日志,就会发现MySql数据库的一张表所有的变更都记录在binlog日志中,如果一直对表进行更新,binlog日志流也会一直增加,数据库中的表就相当于binlog日志流在某个时刻点物化的形式;日志流就是将表的变更数据持续捕获的结果。说明Flink SQL的Dynamic Table是可以非常自然地表示一张不断变化的MySql数据库表

Debezium支持全量同步,也支持增量同步,也支持全量+增量的同步,非常灵活,同时日志的CDC技术使得提供Exactly-Once称为可能。

每条RowData都有一个元数据RowKind,包括4种类型,分别是插入、更新前镜像、更新后镜像、删除,这四种类型和数据库里面的binlog概念保持一致

而Debezium的数据结构,也有一个类似的元数据字段op,op字段的取值也是四种,分别是c、u、d、r,各自对应create、update、delete、read,对于代表更新操作的u,其数据部分包含了前镜像(before)和后镜像(after)

传统的基于CDC的ETL分析中,数据采集工具是必须的,国外用户常用的Debezium,国内用户常用的阿里开源的Canal,采集工具负责采集数据库的增量数据,一些采集工具也支持全量数据同步。采集到的数据一般输出到消息中间件如kafka,然后Flink计算引擎再去消费数据并写入到目的端,目标端可以是各种数据库、数据仓库、数据湖和消息队列。

Flink提供了changelog-json format,可以使changelog数据写入到离线数据仓库(Hive);对于消息队列Kafka,Flink支持通过changelog的upset-kafka connector直接写入到kafka的compacted topic。

一致性就是业务正确性,在“流系统中间件”这个业务领域,端到端一致性就代表 Exacly Once

Msg Processing(简称 EOMP),即一个消息只被处理一次,造成一次效果。即使机器或软件出现故

障,既没有重复数据,也不会丢数据。

幂等就是一个相同的操作,无论重复多少次,造成的效果和只操作一次相等。流系统端到端链路较

长,涉及到上游 Source 层、中间计算层和下游 Sink 层三部分,要实现端到端的一致性,需要实

现以下条件:

上游可以 replay,否则中间计算层收到消息后未计算,却发生 failure 而重启,消息就会丢失。

记录消息处理进度,并保证存储计算结果不出现重复,二者是一个原子操作,或者存储计算结果

是个幂等操作,否则若先记录处理进度,再存储计算结果时发生 failure,计算结果会丢失,或者

是记录完计算结果再发生 failure,就会 replay 生成多个计算结果。

中间计算结果高可用,应对下游在接到计算结果后发生 failure,并未成功处理该结果的场景,可

以考虑将中间计算结果放在高可用的 DataStore 里。

下游去重,应对下游处理完消息后发生 failure,重复接收消息的场景,这种可通过给消息设置

SequcenceId 实现去重,或者下游实现幂等

原创声明,本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

关注作者,阅读全部精彩内容
登录 后参与评论
0 条评论

相关文章

  • Flink CDC 新一代数据集成框架

    主要讲解了技术原理,入门与生产实践,主要功能:全增量一体化数据集成、实时数据入库入仓、最详细的教程。Flink CDC 是Apache Flink的一个重要组件...

    小马哥学JAVA
  • 基于流计算 Oceanus(Flink) CDC 做好数据集成场景

    作者:黄龙,腾讯 CSIG 高级工程师 数据时代,企业对技术创新和服务水准的要求不断提高,数据已成为企业极其重要的资产。无论是在在企业数据中台的建设,亦或者是打...

    腾讯QQ大数据
  • 基于流计算 Oceanus Flink CDC 做好数据集成场景

    数据时代,企业对技术创新和服务水准的要求不断提高,数据已成为企业极其重要的资产。无论是在在企业数据中台的建设,亦或者是打造一站式数据开发和数据治理的PASS平台...

    Andy_l
  • Flink CDC + OceanBase 全增量一体化数据集成方案

    摘要:本文整理自 OceanBase 技术专家王赫(川粉)在 5 月 21 日 Flink CDC Meetup 的演讲。主要内容包括:

    从大数据到人工智能
  • Flink SQL Client实战CDC数据入湖

    本文使用datafaker工具生成数据发送到MySQL,通过flink cdc工具将mysql binlog数据发送到kafka,最后再从kafka中读取数据并...

    从大数据到人工智能
  • Flink CDC 2.0 数据处理流程全面解析

    8月份 FlinkCDC 发布2.0.0版本,相较于1.0版本,在全量读取阶段支持分布式读取、支持checkpoint,且在全量 + 增量读取的过程在不锁表的情...

    大数据老哥
  • 基于Flink CDC打通数据实时入湖

    在构建实时数仓的过程中,如何快速、正确的同步业务数据是最先面临的问题,本文主要讨论一下如何使用实时处理引擎Flink和数据湖Apache Iceberg两种技术...

    数据社
  • Flink CDC 2.0 数据处理流程全面解析

    8月份 FlinkCDC 发布2.0.0版本,相较于1.0版本,在全量读取阶段支持分布式读取、支持checkpoint,且在全量 + 增量读取的过程在不锁表的情...

    Spark学习技巧
  • 实时数据湖:Flink CDC流式写入Hudi

    •Flink 1.12.2_2.11•Hudi 0.9.0-SNAPSHOT(master分支)•Spark 2.4.5、Hadoop 3.1.3、Hive 3...

    王知无-import_bigdata
  • Flink CDC 2.0 数据处理流程全面解析

    8月份 FlinkCDC 发布2.0.0版本,相较于1.0版本,在全量读取阶段支持分布式读取、支持checkpoint,且在全量 + 增量读取的过程在不锁表的情...

    王知无-import_bigdata
  • 实时数据湖:Flink CDC流式写入Hudi

    •Flink 1.12.2_2.11•Hudi 0.9.0-SNAPSHOT(master分支)•Spark 2.4.5、Hadoop 3.1.3、Hive 3...

    ApacheHudi
  • 基于 Flink SQL CDC 的实时数据同步方案

    Flink 1.11 引入了 Flink SQL CDC,CDC 能给我们数据和业务间能带来什么变化?本文由 Apache Flink PMC,阿里巴巴技术专家...

    Spark学习技巧
  • Flink cdc自定义format格式数据源

    变更数据捕获 (CDC) 已成为一种流行的模式,用于从数据库捕获已提交的变更并将这些变更传播给下游消费者,例如保持多个数据存储同步并避免常见的陷阱,例如双重写入...

    从大数据到人工智能
  • 如何利用 Flink CDC 实现数据增量备份到 Clickhouse

    首先什么是CDC ?它是Change Data Capture的缩写,即变更数据捕捉的简称,使用CDC我们可以从数据库中获取已提交的更改并将这些更改发送到下游,...

    麒思妙想
  • Flink CDC同步MySQL分库分表数据到Iceberg数据湖实践

    Flink CDC: 捕获数据库完整的变更日志记录增、删、改等所有数据. Flink在1.11版本开始引入了Flink CDC功能,并且同时支持Table &...

    awwewwbbb
  • Flink CDC + Hudi 海量数据入湖在顺丰的实践

    摘要:本文整理自顺丰大数据研发工程师覃立辉在 5月 21 日 Flink CDC Meetup 的演讲。主要内容包括:

    从大数据到人工智能
  • 数据实时传输平台(CDC)与低代码平台(APAAS)数据集成

    RC的实时数据传输平台(CDC)前段时间就发布了,但是因为忙其他事,就没去研究学习,最近正好有一个小需求,erp出库单某个字段修改后同步到低代码平台中对应的单据...

    用户8905905
  • ChunJun&OceanBase联合方案首次发布:构建一体化数据集成方案

    8月27日,ChunJun社区与OceanBase社区联合组织的开源线下Meetup成功举办,会上重磅发布了「OceanBase&ChunJun:构建一体化数据...

    数栈DTinsight
  • ChunJun&OceanBase联合方案首次发布:构建一体化数据集成方案

    8 月 27 日,ChunJun 社区与 OceanBase 社区联合组织的开源线下 Meetup 成功举办,会上重磅发布了「OceanBase&ChunJun...

    数栈DTinsight

扫码关注腾讯云开发者

领取腾讯云代金券