前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Android 网络请求OkHttp3流程分析

Android 网络请求OkHttp3流程分析

作者头像
xiangzhihong
发布2022-11-30 10:59:53
1K0
发布2022-11-30 10:59:53
举报
文章被收录于专栏:向治洪向治洪向治洪

基本概念

首先从使用出发,其次再结合源码来分析OkHttp3的内部实现的,建议大家下载 OkHttp 源码跟着本文,过一遍源码。首先来看一下OkHttp3的请求代码。

OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {
  Request request = new Request.Builder()
      .url(url)
      .build();

  Response response = client.newCall(request).execute();
  return response.body().string();
}

OkHttp3的执行流程

  1. 创建OkHttpClient对象。OkHttpClient为网络请求执行的一个中心,它会管理连接池,缓存,SocketFactory,代理,各种超时时间,DNS,请求执行结果的分发等许多内容。
  2. 创建Request对象。Request用于描述一个HTTP请求,比如请求的方法是GET还是POST,请求的URL,请求的header,请求的body,请求的缓存策略等。
  3. 创建Call对象。Call是一次HTTP请求的Task,它会执行网络请求以获得响应。OkHttp中的网络请求执行Call既可以同步进行,也可以异步进行。调用call.execute()将直接执行网络请求,阻塞直到获得响应。而调用call.enqueue()传入回调,则会将Call放入一个异步执行队列,由ExecutorService在后台执行。
  4. 执行网络请求并获取响应。

上面的代码中涉及到几个常用的类:Request、Response和Call。下面就这几个类做详细的介绍。

Request

每一个HTTP请求包含一个URL、一个方法(GET或POST或其他)、一些HTTP头,请求还可能包含一个特定内容类型的数据类的主体部分。

Response

响应是对请求的回复,包含状态码、HTTP头和主体部分。

Call

OkHttp使用Call抽象出一个满足请求的模型,尽管中间可能会有多个请求或响应。执行Call有两种方式,同步或异步。

那么首先来看一下OkHttpClient的源码实现。

public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
  public OkHttpClient() {
       this(new Builder());
  }
  OkHttpClient(Builder builder) {
    this.dispatcher = builder.dispatcher;
    this.proxy = builder.proxy;
    this.protocols = builder.protocols;
    this.connectionSpecs = builder.connectionSpecs;
    this.interceptors = Util.immutableList(builder.interceptors);
    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
    this.eventListenerFactory = builder.eventListenerFactory;
    this.proxySelector = builder.proxySelector;
    this.cookieJar = builder.cookieJar;
    this.cache = builder.cache;
    this.internalCache = builder.internalCache;
    this.socketFactory = builder.socketFactory;

    boolean isTLS = false;

    this.hostnameVerifier = builder.hostnameVerifier;
    this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
        certificateChainCleaner);
    this.proxyAuthenticator = builder.proxyAuthenticator;
    this.authenticator = builder.authenticator;
    this.connectionPool = builder.connectionPool;
    this.dns = builder.dns;
    this.followSslRedirects = builder.followSslRedirects;
    this.followRedirects = builder.followRedirects;
    this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
    this.connectTimeout = builder.connectTimeout;
    this.readTimeout = builder.readTimeout;
    this.writeTimeout = builder.writeTimeout;
    this.pingInterval = builder.pingInterval;
  }
}

然后使用okHttpClient发起请求。例如:

okHttpClient.newCall(request).enqueue(new Callback() {
  @Override
  public void onFailure(Call call, IOException e) {

 }

@Override
public void onResponse(Call call, Response response) throws IOException {

}
});

那接下来我们在看下Request。例如:

Request request = new Request.Builder().url("url").build();

该段代码主要实现初始化构建者模式和请求对象,并且用URL替换Web套接字URL。其源码如下:

public final class Request {
    public Builder() {
      this.method = "GET";
      this.headers = new Headers.Builder();
    }
    public Builder url(String url) {
      ......

      // Silently replace web socket URLs with HTTP URLs.
      if (url.regionMatches(true, 0, "ws:", 0, 3)) {
        url = "http:" + url.substring(3);
      } else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
        url = "https:" + url.substring(4);
      }

      HttpUrl parsed = HttpUrl.parse(url);
      ......
      return url(parsed);
    }
    public Request build() {
      ......
      return new Request(this);
    }
}

我们来看一下okHttpClient的异步请求方式。

okHttpClient.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {

}

@Override
public void onResponse(Call call, Response response) throws IOException {

}
});

而newCall又调用了RealCall函数,来看源码:

public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
   @Override 
   public Call newCall(Request request) {
    return new RealCall(this, request, false
     /* for web socket */);
   }
}

RealCall实现了Call.Factory接口创建了一个RealCall的实例,而RealCall是Call接口的实现。继续看代码:

final class RealCall implements Call {
   @Override 
   public void enqueue(Callback responseCallback) {
   synchronized (this) {
   if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
   }
    captureCallStackTrace();
    client.dispatcher().enqueue(new RealCall.AsyncCall(responseCallback));
  }
}

由上面的代码可以得出:

  • 检查这个 call 是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 call#clone方法进行克隆。
  • 利用 client.dispatcher().enqueue(this) 来进行实际执行,dispatcher 是刚才看到的OkHttpClient.Builder 的成员之一。
  • AsyncCall是RealCall的一个内部类并且继承NamedRunnable。
final class AsyncCall extends NamedRunnable {
        private final Callback responseCallback;

        AsyncCall(Callback responseCallback) {
            super("OkHttp %s", new Object[]{RealCall.this.redactedUrl()});
            this.responseCallback = responseCallback;
        }
        ...
}

而NamedRunnable又实现了Runnable接口,来看代码:

public abstract class NamedRunnable implements Runnable {
  ......

  @Override 
  public final void run() {
   ......
    try {
      execute();
    }
    ......
  }

  protected abstract void execute();
}

可以看到NamedRunnable实现了Runnbale接口并且是个抽象类,其抽象方法是execute(),该方法是在run方法中被调用的,这也就意味着NamedRunnable是一个任务,并且其子类应该实现execute方法。下面再看AsyncCall的实现:

final class AsyncCall extends NamedRunnable {
    private final Callback responseCallback;

    AsyncCall(Callback responseCallback) {
      super("OkHttp %s", redactedUrl());
      this.responseCallback = responseCallback;
    }

    ......
final class RealCall implements Call {
  @Override protected void execute() {
  boolean signalledCallback = false;
  try {
     Response response = getResponseWithInterceptorChain();
  if (retryAndFollowUpInterceptor.isCanceled()) {
     signalledCallback = true;
     responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
  } else {
    signalledCallback = true;
    responseCallback.onResponse(RealCall.this, response);
  }
 } catch (IOException e) {
  ......
  responseCallback.onFailure(RealCall.this, e);

} finally {
    client.dispatcher().finished(this);
  }
}

AsyncCall实现了execute方法,首先是调用getResponseWithInterceptorChain()方法获取响应,然后获取成功后,就调用回调的onReponse方法,如果失败,就调用回调的onFailure方法,并调用Dispatcher的finished方法。

Dispatcher线程池介绍

那还看一下Dispatcher类的相关代码:

public final class Dispatcher {
  /** 最大并发请求数为64 */
  private int maxRequests = 64;
  /** 每个主机最大请求数为5 */
  private int maxRequestsPerHost = 5;

  /** 线程池 */
  private ExecutorService executorService;

  /** 准备执行的请求 */
  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();

  /** 正在执行的异步请求,包含已经取消但未执行完的请求 */
  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();

  /** 正在执行的同步请求,包含已经取消单未执行完的请求 */
  private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
  }

在OkHttp,使用如下构造了单例线程池,相关源码如下:

public synchronized ExecutorService executorService() {
    if (executorService == null) {
      executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
          new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
    }
    return executorService;
  }

executorService函数会构造一个线程池ExecutorService:

executorService = new ThreadPoolExecutor(
//corePoolSize 最小并发线程数,如果是0的话,空闲一段时间后所有线程将全部被销毁
    0, 
//maximumPoolSize: 最大线程数,当任务进来时可以扩充的线程最大值,当大于了这个值就会根据丢弃处理机制来处理
    Integer.MAX_VALUE, 
//keepAliveTime: 当线程数大于corePoolSize时,多余的空闲线程的最大存活时间
    60, 
//单位秒
    TimeUnit.SECONDS,
//工作队列,先进先出
    new SynchronousQueue<Runnable>(),   
//单个线程的工厂         
   Util.threadFactory("OkHttp Dispatcher", false));

可以看出,在Okhttp中,构建了一个核心为[0, Integer.MAX_VALUE]的线程池,它不保留任何最小线程数,随时创建更多的线程数,当线程空闲时只能活60秒,它使用了一个不存储元素的阻塞工作队列,一个叫做”OkHttp Dispatcher”的线程工厂。也就是说,在实际运行中,当收到10个并发请求时,线程池会创建十个线程,当工作完成后,线程池会在60s后相继关闭所有线程。

synchronized void enqueue(AsyncCall call) {
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      runningAsyncCalls.add(call);
      executorService().execute(call);
    } else {
      readyAsyncCalls.add(call);
    }
  }

从上述源码分析,如果当前还能执行一个并发请求,则加入 runningAsyncCalls ,立即执行,否则加入 readyAsyncCalls 队列。由此,可以得出Dispatcher的以下作用。

  • 调度线程池Disptcher实现了高并发,低阻塞的实现;
  • 采用Deque作为缓存,先进先出的顺序执行;
  • 任务在try/finally中调用了finished函数,控制任务队列的执行顺序,而不是采用锁,减少了编码复杂性提高性能。
try {
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
        } else {
          signalledCallback = true;
          responseCallback.onResponse(RealCall.this, response);
        }
      } finally {
        client.dispatcher().finished(this);
      }

其流程可以用下图表示:

这里写图片描述
这里写图片描述

getResponseWithInterceptorChain方法

相关的方法源码如下:

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
    return chain.proceed(originalRequest);
  }

从上述源码得知,不管okhttp有多少拦截器最后都会走,如下方法:

Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);

从方法名字基本可以猜到是干嘛的,调用 chain.proceed(originalRequest); 将request传递进来,从拦截器链里拿到返回结果。那么看一下RealInterceptorChain类。

public final class RealInterceptorChain implements Interceptor.Chain {

   public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
        HttpCodec httpCodec, RealConnection connection, int index, Request request) {
        this.interceptors = interceptors;
        this.connection = connection;
        this.streamAllocation = streamAllocation;
        this.httpCodec = httpCodec;
        this.index = index;
        this.request = request;
  }
  ......

 @Override 
 public Response proceed(Request request) throws IOException {
    return proceed(request, streamAllocation, httpCodec, connection);
  }

  public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
    if (index >= interceptors.size()) throw new AssertionError();

    calls++;

    ......

    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(
        interceptors, streamAllocation, httpCodec, connection, index + 1, request);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);

   ......

    return response;
  }

  protected abstract void execute();
}

该类实现了Chain接口,在getResponseWithInterceptorChain调用时好几个参数都传的null。主要看proceed方法,proceed方法中判断index(此时为0)是否大于或者等于client.interceptors(List )的大小。由于httpStream为null,所以首先创建next拦截器链,主需要把索引置为index+1即可;然后获取第一个拦截器,调用其intercept方法。Interceptor 代码如下:

public interface Interceptor {
  Response intercept(Chain chain) throws IOException;

  interface Chain {
    Request request();

    Response proceed(Request request) throws IOException;

    Connection connection();
  }
}

BridgeInterceptor从用户的请求构建网络请求,然后提交给网络,最后从网络响应中提取出用户响应。从最上面的图可以看出,BridgeInterceptor实现了适配的功能。下面是其intercept方法:

public final class BridgeInterceptor implements Interceptor {
  ......

@Override 
public Response intercept(Chain chain) throws IOException {
  Request userRequest = chain.request();
  Request.Builder requestBuilder = userRequest.newBuilder();

 RequestBody body = userRequest.body();
 //如果存在请求主体部分,那么需要添加Content-Type、Content-Length首部
 if (body != null) {
      MediaType contentType = body.contentType();
      if (contentType != null) {
        requestBuilder.header("Content-Type", contentType.toString());
      }

      long contentLength = body.contentLength();
      if (contentLength != -1) {
        requestBuilder.header("Content-Length", Long.toString(contentLength));
        requestBuilder.removeHeader("Transfer-Encoding");
      } else {
        requestBuilder.header("Transfer-Encoding", "chunked");
        requestBuilder.removeHeader("Content-Length");
      }
    }

    if (userRequest.header("Host") == null) {
      requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
      requestBuilder.header("Connection", "Keep-Alive");
    }

    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
    // the transfer stream.
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
      transparentGzip = true;
      requestBuilder.header("Accept-Encoding", "gzip");
    }

    List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
      requestBuilder.header("Cookie", cookieHeader(cookies));
    }

  if (userRequest.header("User-Agent") == null) {
      requestBuilder.header("User-Agent", Version.userAgent());
  }

Response networkResponse = chain.proceed(requestBuilder.build());

HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());

Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);

    if (transparentGzip
        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
        && HttpHeaders.hasBody(networkResponse)) {
      GzipSource responseBody = new GzipSource(networkResponse.body().source());
      Headers strippedHeaders = networkResponse.headers().newBuilder()
          .removeAll("Content-Encoding")
          .removeAll("Content-Length")
          .build();
      responseBuilder.headers(strippedHeaders);
      responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
    }

    return responseBuilder.build();
  }

  /** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */
  private String cookieHeader(List<Cookie> cookies) {
    StringBuilder cookieHeader = new StringBuilder();
    for (int i = 0, size = cookies.size(); i < size; i++) {
      if (i > 0) {
        cookieHeader.append("; ");
      }
      Cookie cookie = cookies.get(i);
      cookieHeader.append(cookie.name()).append('=').append(cookie.value());
    }
    return cookieHeader.toString();
  }
}

从上面的代码可以看出,首先获取原请求,然后在请求中添加头,比如Host、Connection、Accept-Encoding参数等,然后根据看是否需要填充Cookie,在对原始请求做出处理后,使用chain的procced方法得到响应,接下来对响应做处理得到用户响应,最后返回响应。再看下一个拦截器ConnectInterceptor的处理:

public final class ConnectInterceptor implements Interceptor {
  ......

 @Override 
 public Response intercept(Chain chain) throws IOException {
 RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();

 // We need the network to satisfy this request. Possibly for validating a conditional GET.
 boolean doExtensiveHealthChecks = !request.method().equals("GET");
 HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
 RealConnection connection = streamAllocation.connection();

 return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }
}

实际上建立连接就是创建了一个 HttpCodec 对象,它利用 Okio 对 Socket 的读写操作进行封装,Okio 以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对 java.io 和 java.nio 进行了封装,让我们更便捷高效的进行 IO 操作。

CallServerInterceptor

CallServerInterceptor是拦截器链中最后一个拦截器,负责将网络请求提交给服务器。

@Override 
public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    HttpCodec httpCodec = realChain.httpStream();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    RealConnection connection = (RealConnection) realChain.connection();
    Request request = realChain.request();

    long sentRequestMillis = System.currentTimeMillis();
    httpCodec.writeRequestHeaders(request);

    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
      // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
      // Continue" response before transmitting the request body. If we don't get that, return what
      // we did get (such as a 4xx response) without ever transmitting the request body.
      if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
        httpCodec.flushRequest();
        responseBuilder = httpCodec.readResponseHeaders(true);
      }

      if (responseBuilder == null) {
        // Write the request body if the "Expect: 100-continue" expectation was met.
        Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
        BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
        request.body().writeTo(bufferedRequestBody);
        bufferedRequestBody.close();
      } else if (!connection.isMultiplexed()) {
        // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
        // being reused. Otherwise we're still obligated to transmit the request body to leave the
        // connection in a consistent state.
        streamAllocation.noNewStreams();
      }
    }

    httpCodec.finishRequest();

    if (responseBuilder == null) {
      responseBuilder = httpCodec.readResponseHeaders(false);
    }

    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    int code = response.code();
    if (forWebSocket && code == 101) {
      // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
      response = response.newBuilder()
          .body(Util.EMPTY_RESPONSE)
          .build();
    } else {
      response = response.newBuilder()
          .body(httpCodec.openResponseBody(response))
          .build();
    }

    if ("close".equalsIgnoreCase(response.request().header("Connection"))
        || "close".equalsIgnoreCase(response.header("Connection"))) {
      streamAllocation.noNewStreams();
    }

    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
      throw new ProtocolException(
          "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
    }

    return response;
  }

从上面的代码中可以看出,首先获取HttpStream对象,然后调用writeRequestHeaders方法写入请求的头部,然后判断是否需要写入请求的body部分,最后调用finishRequest()方法将所有数据刷新给底层的Socket,接下来尝试调用readResponseHeaders()方法读取响应的头部,然后再调用openResponseBody()方法得到响应的body部分,最后返回响应。

总结

最后我们用一张图来总结ohhttp的整个请求流程。

这里写图片描述
这里写图片描述

OkHttp的底层是通过Java的Socket发送HTTP请求与接受响应的(,但是OkHttp实现了连接池的概念,即对于同一主机的多个请求,其实可以公用一个Socket连接,而不是每次发送完HTTP请求就关闭底层的Socket,这样就实现了连接池的概念,而且OkHttp对Socket的读写操作使用的OkIo库进行了一层封装。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-04-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 基本概念
    • OkHttp3的执行流程
      • Request
      • Response
      • Call
      • Dispatcher线程池介绍
    • getResponseWithInterceptorChain方法
      • CallServerInterceptor
  • 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档