前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >决策树以及XGBoost 树分裂图的多种可视化工具盘点

决策树以及XGBoost 树分裂图的多种可视化工具盘点

作者头像
悟乙己
发布2022-11-30 14:45:25
1.6K0
发布2022-11-30 14:45:25
举报
文章被收录于专栏:素质云笔记

之前有专门研究过,在各自的文中,这里进行罗列:

文章目录


1 pydotplus安装

文档:PyDotPlus Homepage

如果要画出决策树图,一般需要该库,需要先下载: http://www.graphviz.org/download/

在这里插入图片描述
在这里插入图片描述

然后记住下载的路径,

代码语言:javascript
复制
pip install pydotplus

就可以按下面使用了:

代码语言:javascript
复制
import os
os.environ["PATH"] += os.pathsep + 'C:\\Desktop\\Graphviz\\bin\\'
import pydotplus 

2 XGBoost画出分裂图

R+python︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读

如果y是分类变量,可以直接画出节点图:

代码语言:javascript
复制
from matplotlib import pyplot
from xgboost import plot_tree
plot_tree(gbm, num_trees=0, rankdir='LR')
pyplot.show()

可以直接通过plot_tree画出节点图,但是plot_tree很丑,很模糊!

在这里插入图片描述
在这里插入图片描述

一种解决方案,参考https://github.com/dmlc/xgboost/issues/1725:

代码语言:javascript
复制
xgb.plot_tree(bst, num_trees=2)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(150, 100)
fig.savefig('tree.png')

于是乎,就需要来一张清晰一些的图片还有一种画法如下:

代码语言:javascript
复制
xgb.to_graphviz(gbm, num_trees=80, rankdir='LR')
在这里插入图片描述
在这里插入图片描述

来观察一下图型:

其中分支代表,category<5,两条路,代表条件成立,yes;条件不成立,no

每个节点都带有节点名,但是圆圈的大小,有人说是样本量越大,圆圈越大,也有可能是根据节点名称的多少来划定。

如何把图形输出出来:from graphviz import Digraph(参考:如何画XGBoost里面的决策树(decision tree)

参数界面:https://xgboost.readthedocs.io/en/latest/python/python_api.html


3 决策树画出分裂图

决策树之ID3、C4.5、C5.0等五大算法及python实现

代码语言:javascript
复制
from sklearn.datasets import load_iris
from sklearn import tree
import sys
import os       
from IPython.display import Image as Images
import pydotplus 
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import numpy as np

import os
os.environ["PATH"] += os.pathsep + 'C:\\Desktop\\Graphviz\\bin\\'

iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

dot_data = tree.export_graphviz(clf, out_file=None, 
                         feature_names=iris.feature_names,  
                         class_names=iris.target_names,  
                         filled=True, rounded=True,  
                         special_characters=True)  
graph = pydotplus.graph_from_dot_data(dot_data)  

Images(graph.create_png()) 

在ipython的notebook生成的图如下:

在这里插入图片描述
在这里插入图片描述

其中解析一下这张图:

通过剪枝,把很多不必要的枝叶进行删减,保留有效节点;根据gini系数来判定节点,划分最优属性,gini越大,分割贡献越大,越容易成为高层节点。

颜色信息,这边

  • virginica——紫色/2;
  • versicolor——绿色/1;
  • setosa——橙色/0。 gini系数的大小,代表颜色的深浅,gini越大,颜色越浅。

samples代表这个节点的样本数量,value = [0,2,1]代表三种种类的样本数量分别是多少。

一般来说,紫色越多的分支,分类效力越高。

如果要保存图片,可以使用下面的语句:

代码语言:javascript
复制
Image.open(BytesIO(graph.create_png())).save('roi.png')

如何选择最优路径的一些准则,笔者自己整理,勿怪:

  • 紫色扎堆、链路较短、而且完整链路上只有紫色会更好;
  • 链路最低端最好是gini = 0

4 高度可视化:dtree_viz

参考:非常fancy的可视化决策树dtree_viz 用dtreeviz实现决策树可视化

第一步:使用前需要安装

代码语言:javascript
复制
pip install dtreeviz
pip install pydotplus

第二步:然后安装: 如果要画出决策树图,一般需要该库,需要先下载: http://www.graphviz.org/download/

在这里插入图片描述
在这里插入图片描述

第三步,使用的时候,需要键入:

代码语言:javascript
复制
import os
os.environ["PATH"] += os.pathsep + 'C:\\Desktop\\Graphviz\\bin\\'
import pydotplus 

4.1 案例

代码语言:javascript
复制
import dtreeviz
import pandas as pd
import numpy as np
from sklearn.datasets import *
from sklearn import tree

iris = load_iris()
df_iris = pd.DataFrame(iris['data'],columns = iris['feature_names'])
df_iris['target'] = iris['target']

clf = tree.DecisionTreeClassifier()
clf.fit(iris.data,iris.target)


import os
os.environ["PATH"] += os.pathsep + 'C:\\Graphviz\\bin\\'
import pydotplus 

from dtreeviz.trees import dtreeviz
viz = dtreeviz(clf,
               iris['data'],
               iris['target'],
               target_name='',
               feature_names=np.array(iris['feature_names']),
               class_names={0:'setosa',1:'versicolor',2:'virginica'},scale=2)
              
viz

其中要想跑成功,这两句必不可少:

代码语言:javascript
复制
os.environ["PATH"] += os.pathsep + 'C:\\Graphviz\\bin\\'
import pydotplus 
在这里插入图片描述
在这里插入图片描述

4.2 单样本分析

代码语言:javascript
复制
viz = dtreeviz(clf, 
               x_data=X_train,
               y_data=y_train,
               target_name='class',
               feature_names=iris.feature_names, 
               class_names=list(iris.target_names),
               title="Decision Tree - Iris data set",
               #orientation="LR", 
               X=X_test[0])  
viz

这张图与前一张非常相似,然而,橙色突出清楚地显示了样本所遵循的路径。此外,我们可以在每个直方图上看到橙色三角形。它表示给定特征的观察值。最后,我们看到了这个样本的所有特征的值,用于决策的特征用橙色突出显示。在这种情况下,只有两个特征被用来预测观察属于花色类。

在这里插入图片描述
在这里插入图片描述

提示:我们还可以通过设置orientation=“LR”从上到下再从左到右更改绘图的方向。在本文中我们不展示它,因为对于屏幕较窄的设备,图表的缩放效果不会很好。

最后,我们可以用通俗易懂的英语打印这个观察预测所用的决定。为此运行以下命令

代码语言:javascript
复制
print(explain_prediction_path(clf, X_test[0], 
                              feature_names=iris.feature_names, 
                              explanation_type="plain_english"))

# 2.45 <= petal length (cm)  < 4.75 
# petal width (cm) < 1.65

这样我们就可以清楚地看到这个观察所满足的条件。

4.3 具有的参数

具体可以参考这个:https://github.com/parrt/dtreeviz/blob/master/dtreeviz/trees.py 可以看到:

代码语言:javascript
复制
def dtreeviz(tree_model,
             x_data: (pd.DataFrame, np.ndarray) = None,
             y_data: (pd.DataFrame, np.ndarray) = None,
             feature_names: List[str] = None,
             target_name: str = None,
             class_names: (Mapping[Number, str], List[str]) = None,  # required if classifier,
             tree_index: int = None,  # required in case of tree ensemble,
             precision: int = 2,
             orientation: ('TD', 'LR') = "TD",
             instance_orientation: ("TD", "LR") = "LR",
             show_root_edge_labels: bool = True,
             show_node_labels: bool = False,
             show_just_path: bool = False,
             fancy: bool = True,
             histtype: ('bar', 'barstacked', 'strip') = 'barstacked',
             highlight_path: List[int] = [],
             X: np.ndarray = None,
             max_X_features_LR: int = 10,
             max_X_features_TD: int = 20,
             depth_range_to_display: tuple = None,
             label_fontsize: int = 12,
             ticks_fontsize: int = 8,
             fontname: str = "Arial",
             title: str = None,
             title_fontsize: int = 14,
             colors: dict = None,
             cmap: str = "RdYlBu",
             scale=1.0
             ) \
        -> DTreeViz:

可以调整的参数还是蛮多的

5 dtreeplot

来看一下一个DIY的库,还可以:Python必备!决策树可视化神器dtreeplot开源啦!

在这里插入图片描述
在这里插入图片描述

安装:

代码语言:javascript
复制
pip3 install dtreeplot

案例也比较简单:

代码语言:javascript
复制
# 使用
from dtreeplot import model_plot

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier 

X, y = datasets.make_classification(n_samples=30000, 
                                    n_features=10, 
                                    weights=[0.96, 0.04], 
                                    random_state=5)
features = [f'Var{i+1}' for i in range(X.shape[1])]


clf = DecisionTreeClassifier(criterion='gini',
                             max_depth=3, 
                             min_samples_split=30, 
                             min_samples_leaf=10, 
                             random_state=1234)
model = clf.fit(X, y)

model_plot(model, features, labels=y, height=530)

来看一下DecisionTreeClassifier其中的参数比较常见了:

  • max_depth:树的深度
  • min_samples_split:最小默认为2,最小分裂数
  • min_samples_leaf:最小默认为1,一个叶子节点最少的样本数

案例二:

代码语言:javascript
复制
# import dtreeplot package model_plot function
from dtreeplot import model_plot

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier 

iris = datasets.load_iris()
X = iris.data
y = iris.target
features = iris.feature_names

clf = DecisionTreeClassifier(max_depth=3, random_state=1234)
model = clf.fit(X, y)

# visualize tree model
model_plot(model, features, labels=y, height=300)

当然,model_plot不太方便的是,生成的HTML是随机命名的, 一次性生成好几个可视化文件的,比较难找到。。 所以,可以自己DIY把model_plot中自动命名给改掉


6 scikit-learn + graphviz 自己DIY画图

整体来看,是作者DIY,所以可拓展性上确实要差一些

6.1 来源

来源文章:Python | 基于scikit-learn决策树可视化优化 github地址:tree.py

直接上代码好了,笔者非常简单的对原作者代码进行整理 原作者的数据源为:Titanic.csv

该代码因为是DIY的,需要安装graphviz,当然这个库,对于window用户来说,可以说是噩梦,可以参考之前的安装教程。

6.2 代码

代码语言:javascript
复制
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import tree
from sklearn.tree import _tree
from sklearn.base import is_classifier # 用于判断是回归树还是分类树
from dtreeviz.colors import adjust_colors # 用于分类树颜色(色盲友好模式)
import seaborn as sns #用于回归树颜色
from matplotlib.colors import Normalize # 用于标准化RGB数值
import graphviz # 插入graphviz库

import os
os.environ["PATH"] += os.pathsep + 'Graphviz\\bin\\'
import pydotplus

def get_yvec_xmat_vnames(target, df):

    yvec = df[target]

    # 将拥有n个不同数值的变量转换为n个0/1的变量,变量名字中有"_isDummy_"作为标注
    xmat = pd.get_dummies(df.loc[:, df.columns != target], prefix_sep = "_isDummy_")

    vnames = xmat.columns

    return yvec, xmat, vnames

def get_categorical_dict(df):
    # store all the values of categorical value
    df_categorical = df.select_dtypes(include=['object', 'bool', 'category'])
    categorical_dict = {}
    for i in df_categorical.columns:
        # store in descending order
        categorical_dict[i]= sorted(list(set(df[i].astype('str'))))
    return categorical_dict

def tree_to_dot(tree, target, df):
    """ 把树变成dot data,用于输入graphviz然后绘制
    
    参数
        tree: DecisionTree的输出
        target: 目标变量名字
        df: 表单

    输出
        graphvic_str: dot data
    """
    # get yvec, vnames and categorical_dict of the df
    yvec, xmat, vnames = get_yvec_xmat_vnames(target, df)
    categorical_dict = get_categorical_dict(df)

    if is_classifier(tree):
        # 如果是分类树
        # classes should be in descending order
        class_names = sorted(list(set(yvec)))
        return classification_tree_to_dot(tree, vnames, class_names, categorical_dict)
    else:
        return regression_tree_to_dot(tree, vnames, categorical_dict)

    
def classification_tree_to_dot(tree, feature_names, class_names, categorical_dict):
    """ 把分类树转化成dot data

    参数
        tree: DecisionTreeClassifier的输出
        feature_names: vnames, 除去目标变量所有变量的名字
        class_names: 目标变量所有的分类
        categorical_dict: 储存所有名称及分类的字典

    输出
        graphvic_str: the dot data
    """    
    tree_ = tree.tree_
    
    # store colors that distinguish discrete chunks of data
    if len(class_names) <= 10:
        # get the colorblind friendly colors
        color_palette = adjust_colors(None)['classes'][len(class_names)]
    else:
        color_palette = sns.color_palette("coolwarm",len(class_names)).as_hex()

    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    
    # initialize the dot data string
    graphvic_str = 'digraph Tree {node [shape=oval, penwidth=0.1, width=1, fontname=helvetica] ; edge [fontname=helvetica] ;'
    #print(graphvic_str)
    
    # node = 0
    # depth = 1
    
    def recurse(node, depth, categorical_dict):
         # store the categorical_dict information of each side
        categorical_dict_L = categorical_dict.copy()
        categorical_dict_R = categorical_dict.copy()
        # non local statement of graphvic_str
        nonlocal graphvic_str
        # variable is not dummy by default
        is_dummy = False
        # get the threshold
        threshold = tree_.threshold[node]
        
        # get the feature name
        name = feature_name[node]
        # judge whether a feature is dummy or not by the indicator "_isDummy_"
        if "_isDummy_" in str(name) and name.split('_isDummy_')[0] in list(categorical_dict.keys()):
            is_dummy = True
            # if the feature is dummy, the threshold is the value following name
            name, threshold = name.split('_isDummy_')[0], name.split('_isDummy_')[1]
        
        # get the data distribution of current node
        value = tree_.value[node][0]
        # get the total amount
        n_samples = tree_.n_node_samples[node]
        # calculate the weight
        weights = [i/sum(value) for i in value]
        # get the largest class
        class_name = class_names[np.argmax(value)]
        
        # pair the color and weight
        fillcolor_str = ""
        for i, j in enumerate(color_palette): 
            fillcolor_str += j + ";" + str(weights[i]) + ":"
        fillcolor_str = '"' + fillcolor_str[:-1] + '"'
        
        if tree_.feature[node] != _tree.TREE_UNDEFINED: 
            # if the node is not a leaf
            graphvic_str += ('{} [style=wedged, label=<{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,name)
            #print(('{} [style=wedged, label=<{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,name))
            if is_dummy:
                # if the feature is dummy and if its total categories > 5
                categorical_dict_L[name] = [str(i) for i in categorical_dict_L[name] if i != threshold]
                categorical_dict_R[name] = [str(threshold)]
                if len(categorical_dict[name])>5:
                    # only show one category on edge
                    threshold_left = "not " + threshold
                    threshold_right = threshold
                else:
                    # if total categories <= 5, list all the categories on edge
                    threshold_left = ", ".join( categorical_dict_L[name])
                    threshold_right = threshold
            else:
                # if the feature is not dummy, then it is numerical
                threshold_left = "<="+ str(round(threshold,3))
                threshold_right = ">"+ str(round(threshold,3))
            graphvic_str += ('{} -> {} [labeldistance=2.5, labelangle=45, headlabel="{}"] ;').format(node,tree_.children_left[node],threshold_left)
            graphvic_str += ('{} -> {} [labeldistance=2.5, labelangle=-45, headlabel="{}"] ;').format(node,tree_.children_right[node],threshold_right)
            #print(('{} -> {} [labeldistance=2.5, labelangle=45, headlabel="{}"] ;').format(node,tree_.children_left[node],threshold_left))
            #print(('{} -> {} [labeldistance=2.5, labelangle=-45, headlabel="{}"] ;').format(node,tree_.children_right[node],threshold_right))

            recurse(tree_.children_left[node], depth + 1,categorical_dict_L)
            recurse(tree_.children_right[node], depth + 1,categorical_dict_R)
        else:
            # the node is a leaf
            graphvic_str += ('{} [shape=box, style=striped, label=<{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,class_name)
            #print(('{} [shape=box, style=striped, label=<{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,class_name))

    recurse(0, 1,categorical_dict)
    return graphvic_str + "}"

def regression_tree_to_dot(tree, feature_names, categorical_dict):
    """ 把回归树转换成dot data

    参数
        tree: DecisionTreeClassifier的输出
        feature_names: vnames, 除去目标变量所有变量的名字
        categorical_dict: 储存所有名称及分类的字典

    输出
        graphvic_str: the dot data
    """    
    # get the criterion of regression tree: mse or mae
    criterion = tree.get_params()['criterion']
    
    tree_ = tree.tree_
    
    value_list = tree_.value[:,0][:,0]
    
    # Normalize data to produce heatmap colors
    cmap = cm.get_cmap('coolwarm')
    norm = Normalize(vmin=min(value_list), vmax=max(value_list))
    rgb_values = (cmap(norm(value_list))*255).astype(int)
    hex_values = ['#%02x%02x%02x' % (i[0], i[1], i[2]) for i in rgb_values]
    
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    
    # initialize the dot data string
    graphvic_str = 'digraph Tree {node [shape=oval, width=1, color="black", fontname=helvetica] ;edge [fontname=helvetica] ;'
    #print(graphvic_str)

    def recurse(node, depth, categorical_dict):
        # store the categorical_dict information of each side
        categorical_dict_L = categorical_dict.copy()
        categorical_dict_R = categorical_dict.copy()
        # non local statement of graphvic_str
        nonlocal graphvic_str
        
        # variable is not dummy by default
        is_dummy = False
        # get the threshold
        threshold = tree_.threshold[node]
        
        # get the feature name
        name = feature_name[node]
        # judge whether a feature is dummy or not by the indicator "_isDummy_"
        if "_isDummy_" in str(name) and name.split('_isDummy_')[0] in list(categorical_dict.keys()):
            is_dummy = True
            # if the feature is dummy, the threshold is the value following name
            name, threshold = name.split('_isDummy_')[0], name.split('_isDummy_')[1]
        
        # get the regression value
        value = round(tree_.value[node][0][0],3)
        # get the impurity
        impurity = criterion+ "=" + str(round(tree_.impurity[node],3))
        # get the total amount
        n_samples = tree_.n_node_samples[node]

        
        # pair the color with node
        fillcolor_str = '"'+hex_values[node]+'"'

        if tree_.feature[node] != _tree.TREE_UNDEFINED: 
            # if the node is not a leaf
            graphvic_str += ('{} [style="filled", label=<{}<br/>{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,impurity,name)
            #print(('{} [style="filled", label=<{}<br/>{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,impurity,name))
            if is_dummy:
                # if the feature is dummy and if its total categories > 5
                categorical_dict_L[name] = [str(i) for i in categorical_dict_L[name] if i != threshold]
                categorical_dict_R[name] = [str(threshold)]
                
                if len(categorical_dict[name])>5:
                    # only show one category on edge
                    threshold_left = "not " + threshold
                    threshold_right = threshold
                else:
                    # if total categories <= 5, list all the categories on edge
                    threshold_left = ", ".join(categorical_dict_L[name])
                    threshold_right = threshold
            else:
                # if the feature is not dummy, then it is numerical
                threshold_left = "<="+ str(round(threshold,3))
                threshold_right = ">"+ str(round(threshold,3))
            graphvic_str += ('{} -> {} [labeldistance=2.5, labelangle=45, headlabel="{}"] ;').format(node,tree_.children_left[node],threshold_left)
            graphvic_str += ('{} -> {} [labeldistance=2.5, labelangle=-45, headlabel="{}"] ;').format(node,tree_.children_right[node],threshold_right)
            #print(('{} -> {} [labeldistance=2.5, labelangle=45, headlabel="{}"] ;').format(node,tree_.children_left[node],threshold_left))
            #print(('{} -> {} [labeldistance=2.5, labelangle=-45, headlabel="{}"] ;').format(node,tree_.children_right[node],threshold_right))

            recurse(tree_.children_left[node], depth + 1,categorical_dict_L)
            recurse(tree_.children_right[node], depth + 1,categorical_dict_R)
        else:
            # the node is a leaf
            graphvic_str += ('{} [shape=box, style=filled, label=<{}<br/>{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,impurity,value)
            #print(('{} [shape=box, style=filled, label=<{}<br/>{}<br/>{}>, fillcolor ='+fillcolor_str+'] ;').format(node,n_samples,impurity,value))

    recurse(0, 1,categorical_dict)
    return graphvic_str + "}"

if __name__=='__main__':
    df = pd.read_csv('Titanic.csv', header=0)
    df.dtypes
    df.survived = df.survived.astype(str)
    
    yvec, xmat, vnames = get_yvec_xmat_vnames("survived",df)
    dt = DecisionTreeClassifier(max_depth=2, random_state=1234)
    dt.fit(xmat, yvec)
    
    dot_data = tree.export_graphviz(dt,
                           feature_names = vnames,  
                          filled=True)  
    graph = graphviz.Source(dot_data)  
    graph 
    
    dot_data = tree_to_dot(dt, "survived",df)
    graph = graphviz.Source(dot_data)  
    graph

效果为:

在这里插入图片描述
在这里插入图片描述

当然这里没有提到如何保存图片,可以参考:

代码语言:javascript
复制
graph.render(filename='test2',view = True, format='jpg')

简单说一下原理,就是:

  • 先生成丑的树
  • 提取信息 + 加工,生成上述的树
在这里插入图片描述
在这里插入图片描述

抽取信息 + 重组信息为以下格式:

代码语言:javascript
复制
Out[45]: 'digraph Tree {node [shape=oval, penwidth=0.1, width=1, fontname=helvetica] ; edge [fontname=helvetica] ;0 [style=wedged, label=<100<br/>FT_PurchaseFrist_category_SC>, fillcolor ="#FEFEBB;0.95:#a1dab4;0.05"] ;0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;0 -> 6 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;1 [style=wedged, label=<84<br/>FT_Purchase_line_Prestige_White>, fillcolor ="#FEFEBB;0.9880952380952381:#a1dab4;0.011904761904761904"] ;1 -> 2 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;1 -> 3 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;2 [shape=box, style=striped, label=<81<br/>0>, fillcolor ="#FEFEBB;1.0:#a1dab4;0.0"] ;3 [style=wedged, label=<3<br/>FT_FirstYear_c>, fillcolor ="#FEFEBB;0.6666666666666666:#a1dab4;0.3333333333333333"] ;3 -> 4 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;3 -> 5 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;4 [shape=box, style=striped, label=<1<br/>1>, fillcolor ="#FEFEBB;0.0:#a1dab4;1.0"] ;5 [shape=box, style=striped, label=<2<br/>0>, fillcolor ="#FEFEBB;1.0:#a1dab4;0.0"] ;6 [style=wedged, label=<16<br/>FT_PurchaseFrist_line_Capture_Totale>, fillcolor ="#FEFEBB;0.75:#a1dab4;0.25"] ;6 -> 7 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;6 -> 16 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;7 [style=wedged, label=<10<br/>FT_PurchaseCross_category_SCMUFR>, fillcolor ="#FEFEBB;0.6:#a1dab4;0.4"] ;7 -> 8 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;7 -> 15 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;8 [style=wedged, label=<7<br/>FT_Purchase_line_MU_other>, fillcolor ="#FEFEBB;0.42857142857142855:#a1dab4;0.5714285714285714"] ;8 -> 9 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;8 -> 14 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;9 [style=wedged, label=<5<br/>FT_PurchaseCross_category_SCMU>, fillcolor ="#FEFEBB;0.6:#a1dab4;0.4"] ;9 -> 10 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;9 -> 13 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;10 [style=wedged, label=<3<br/>FT_PurchaseFrist_line_Life>, fillcolor ="#FEFEBB;0.3333333333333333:#a1dab4;0.6666666666666666"] ;10 -> 11 [labeldistance=2.5, labelangle=45, headlabel="<=0.5"] ;10 -> 12 [labeldistance=2.5, labelangle=-45, headlabel=">0.5"] ;11 [shape=box, style=striped, label=<2<br/>1>, fillcolor ="#FEFEBB;0.0:#a1dab4;1.0"] ;12 [shape=box, style=striped, label=<1<br/>0>, fillcolor ="#FEFEBB;1.0:#a1dab4;0.0"] ;13 [shape=box, style=striped, label=<2<br/>0>, fillcolor ="#FEFEBB;1.0:#a1dab4;0.0"] ;14 [shape=box, style=striped, label=<2<br/>1>, fillcolor ="#FEFEBB;0.0:#a1dab4;1.0"] ;15 [shape=box, style=striped, label=<3<br/>0>, fillcolor ="#FEFEBB;1.0:#a1dab4;0.0"] ;16 [shape=box, style=striped, label=<6<br/>0>, fillcolor ="#FEFEBB;1.0:#a1dab4;0.0"] ;}'
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-07-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章目录
  • 1 pydotplus安装
  • 2 XGBoost画出分裂图
  • 3 决策树画出分裂图
  • 4 高度可视化:dtree_viz
    • 4.1 案例
      • 4.2 单样本分析
        • 4.3 具有的参数
        • 5 dtreeplot
        • 6 scikit-learn + graphviz 自己DIY画图
          • 6.1 来源
            • 6.2 代码
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档