运算器
目录
1、理解进位计数制,掌握常用进制之间的转换;
2、理解真值与机器数的概念,了解BCD码的概念;
3、掌握海明码和循环冗余校验码的计算;
4、掌握定点数的各种表示方法,包括无符号数的表示;有符号数的原码、
反码、补码、移码表示,掌握定点数的移位运算;掌握定点数的加、
减、乘、除运算;
5、掌握浮点数的表示方法;掌握浮点数的加减运算原理及流程;
6、了解串行加法器和并行加法器的原理;了解算术逻辑单元ALU的功能与结构。
算数逻辑单元 一次运行两个数参加运算
运算器的核心部件是算数逻辑单元
输入: 两个参加运算的信号和控制信号
输出: 运算结果和运算状态
五大部件,包括输入输出的接口电路,全是数字信号
所有的输入和输出信号都只能是零或者是一
**整章在研究如何二进制进行十进制的运算?
符号怎么编 正负01
数值怎么编 小数点之前除以2.小数点之后乘以2(但是会有误差)
小数点怎么编 用定点数表示浮点数
得找到一种编码,把十进制的数编译成二进制的编码
通常我们把一个数(连同符号)在机器中数值化后,称为:机器数
定点数:
定点小数:小数点固定在数值部分的左边(符号位的右边)。
定点整数:小数点固定在数值部分的右边。
假设用一个n+1位表示定点数 X = X0 X1X2…Xn,
X0:代表符号(放在最左,“0”正号 / “1”负号),
X1X2…Xn:代表数值。
定点数只能表示纯小数(小于一)和纯整数(大于一)两种
而浮点数则无限制
一个n+1位整数,原码能表示的数值范围是:
(1111…1) -2n+1 ≤x ≤2n-1 (0111…1)
补码的特性:
解决了负数符号问题, 简化了运算器的电路设计。
(1)在补码表中,0有唯一的编码(原码和反码都有两个,正负0)
(2)符号位可以与数值一起参加运算
(3) 只设加法器完成加减运算
一个n+1 位整数补码所能表示的数值范围为:
(100…0) -2^n ≤ x ≤ 2^n-1 (011…1)
移码 (主要用于比较大小,浮点数再讲)
补码的符号位取反
英文字符的机内代码是8位ASCII码,最高为“0”,
汉字字符的机内代码是16位内码,两个字节 , 最高位为“1”
汉字是以内码的形式存储的以点阵的形式来打印。
(仅需要知道这些校验码)
用于并行数据传送中,发现一位或奇数位数据出错,
没有纠错能力。
校验方法: 发送用奇校验,接受也应该是奇校验,发送是偶校验,接收也应该是偶校验
并非100%
1、补码加法
[ X+Y ]补= [ X ]补+ [ Y ]补
2、补码减法
[ X-Y ]补= [ X +(-Y)]补= [ X ]补+ [ -Y ]
[ -Y ]补 等于 [ Y ]补连同符号位在内求反,末位加1。
大于 127 称为上溢或正溢出,
小于-128 称为下溢或负溢出。
计算机只能判断溢出,不能处理溢出
溢出的判断方法:
双符号位判溢出: 00 11不溢出,01正一,10负一
机器--双进位判断
在补码定点加法运算中,若采用1位符号位,则当( )时,表示结果溢出。
A、符号位有进位
B、符号位进位和最高数位进位异或结果为0
C、符号为1
D、符号位进位和最高数位进位异或结果为1
在浮点数的标准里往往是尾数的位数更长
比大小比阶码比精度比尾数
浮点数的溢出
判溢出判的是阶码 :
上溢 阶码j > 最大阶码
下溢 阶码j < 最小阶码 按 机器零 处理
??
移码:补码的符号位取反
浮点数的阶码为什么用移码表示 有利于机器数比大小!
浮点数:尾数规格化(提高精度)
都和尾数的最高位有关
原码规格化: 尾数最高位为1
补码规格化: 尾数最高位!=符号位
(有空再看)
不会考两个浮点数加减乘除本身,但是会考察过程中的细节
阶码怎么变——》》动阶码就动尾数
对阶码对 大阶码
5.2、浮点乘除运算
阶码加减 ,尾数乘除
一般衡量CPU的运算速度,每秒钟执行多少浮点运算