首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >图解原理|Linux I/O 神器之 io_uring

图解原理|Linux I/O 神器之 io_uring

作者头像
用户7686797
发布2022-12-07 08:21:46
1.2K0
发布2022-12-07 08:21:46
举报
文章被收录于专栏:Linux内核那些事Linux内核那些事

io_uring 是 Linux 于 2019 年加入到内核的一种新型异步 I/O 模型,io_uring 主要为了解决 原生AIO(Native AIO) 存在的一些不足之处。下面介绍一下原生 AIO 的不足之处:

  • 系统调用开销大:提交 I/O 操作和获取 I/O 操作的结果都需要通过系统调用完成,而触发系统调用时,需求进行上下文切换。在高 IOPS(Input/Output Per Second)的情况下,进行上下文切换也会消耗大量的CPU时间。
  • 仅支持 Direct I/O(直接I/O):在使用原生 AIO 的时候,只能指定 O_DIRECT 标识位(直接 I/O),不能借助文件系统的页缓存(page cache)来缓存当前的 I/O 请求。
  • 对数据有大小对齐限制:所有写操作的数据大小必须是文件系统块大小(一般为4KB)的倍数,而且要与内存页大小对齐。
  • 数据拷贝开销大:每个 I/O 提交需要拷贝 64+8 字节,每个 I/O 完成结果需要拷贝 32 字节,总共 104 字节的拷贝。这个拷贝开销是否可以承受,和单次 I/O 大小有关:如果需要发送的 I/O 本身就很大,相较之下,这点消耗可以忽略。而在大量小 I/O 的场景下,这样的拷贝影响比较大。

鉴于原生 AIO 存在这么多不足之处,于是乎 Jens Axboe(io_uring 作者)就开发出一套全新的异步 I/O 接口来解决这些问题。

既然 io_uring 这么优秀,我们就来学习一下其先进思想吧!下面将会介绍 io_uring 的原理。io_uring 的出现就是为了解决上面的问题,我们来看看 io_uring 是怎么处理的。

1. 减少系统调用

由于调用系统调用时,会从用户态切换到内核态,从而进行上下文切换,而上下文切换会消耗一定的 CPU 时间。

使用 read()write() 等系统调用进行 I/O 操作时,会从用户态嵌入到内核态,如下图所示:

io_uring 为了减少或者摒弃系统调用,采用了用户态与内核态 共享内存 的方式来通信。如下图所示:

用户进程可以向 共享内存 提交要发起的 I/O 操作,而内核线程可以从 共享内存 中读取 I/O 操作,并且进行相关的 I/O 操作。

用户态对共享内存进行读写操作是不需要使用系统调用的,所以不会发生上下文切换的情况。

2. 提交队列与完成队列

前面介绍过,io_uring 通过用户态与内核态共享内存的方式,来免去了使用系统调用发起 I/O 操作的过程。

io_uring 主要创建了 3 块共享内存:

  • 提交队列(Submission Queue, SQ):一整块连续的内存空间存储的环形队列,用于存放将执行 I/O 操作的数据(指向提交队列项数组的索引)。
  • 完成队列(Completion Queue, CQ):一整块连续的内存空间存储的环形队列,用于存放 I/O 操作完成后返回的结果。
  • 提交队列项数组(Submission Queue Entry,SQE):提交队列中的一项。

它们之间的关系如下图所示:

提交队列

在内核中,使用 io_sq_ring 结构来表示 提交队列,其定义如下:

struct io_sq_ring {
    struct io_uring {
        u32 head;
        u32 tail;
    }                   r;             // 使用head和tail指针来模拟环形操作
    ...
    u32                 ring_entries;  // 队列中的提交项总数
    ...
    u32                 flags;
    u32                 array[];       // 环形队列数组(指向提交队列项数组的索引)
};

io_sq_ring 结构各个字段的含义如下:

  • head:环形队列的头指针。
  • tail:环形队列的尾指针。
  • ring_entries:队列中已存在的 I/O 操作项总数。
  • array:环形队列数组,指向提交队列项数组的索引。

io_sq_ring 的结构图如下所示:

内核会将 io_sq_ring 结构映射到应用程序的内存空间,这样应用程序与内核都能操作 io_sq_ring 结构。应用程序可以直接向 io_sq_ring 结构的环形队列中提交 I/O 操作,而不用通过系统调用来提交,从而避免了上下文切换的发生。

而内核线程可以通过从 io_sq_ring 结构的环形队列中获取到要进行的 I/O 操作,并且发起 I/O 请求。

提交队列项

从上面的分析可知,io_sq_ring 结构 array 字段只是一个整形类型的数组,用于存储指向 提交队列项数组 的的索引。在内核中,提交队列项 使用 io_uring_sqe 结构表示,其定义如下:

struct io_uring_sqe {
    __u8    opcode;     /* type of operation for this sqe */
    ...
    __u16   ioprio;     /* ioprio for the request */
    __s32   fd;         /* file descriptor to do IO on */
    __u64   off;        /* offset into file */
    __u64   addr;       /* pointer to buffer or iovecs */
    __u32   len;        /* buffer size or number of iovecs */
    ...
};

下面介绍一下 io_uring_sqe 结构各个字段的作用:

  • opcode:I/O 操作码,主要用于表示当前的 I/O 操作是什么类型,如读、写或者同步等。
  • ioprio:I/O 操作的优先级,可以通过此字段来把一些重要的 I/O 操作提前执行。
  • fd:I/O 操作对应的文件句柄。
  • off:当前 I/O 操作的偏移量。
  • addr:用于指向当前 I/O 操作所关联的内存地址。如写操作,指向的是要写入到文件的内容的内存地址。
  • len:表示当前 I/O 操作的数据长度。

当用户调用 io_uring_setup() 系统调用创建一个 io_ring 对象时,内核将会创建一个类型为 io_uring_sqe 结构的数组。内核也会将此数组映射到应用程序的内存空间,这样应用程序就可以直接操作这个数组。

应用程序提交 I/O 操作时,先要从 提交队列项数组 中获取一个空闲的项,然后向此项填充数据(如 I/O 操作码、要进行 I/O 操作的文件句柄等),然后将此项在 提交队列项数组 的索引写入 提交队列 中。

liburing 代码库已经把这些繁琐的操作封装成友好的 API,用户只需要直接调用这些 API 来进行操作即可。 关于 liburing 代码库的使用,可以参考其使用手册,本文不作详细介绍。

完成队列

当内核完成 I/O 操作后,会将 I/O 操作的结果保存到 完成队列 中。内核使用 io_cq_ring 结构来表示,其定义如下:

struct io_cq_ring {
    struct io_uring {
        u32 head;
        u32 tail;
    };
    ...
    u32                 ring_entries;
    ...
    struct io_uring_cqe cqes[];
};

struct io_uring_cqe {
    __u64   user_data;  // 指向 I/O 操作返回的数据
    __s32   res;        // I/O 操作的结果
    ...
};

完成队列提交队列 类似,也是一个环形队列。下面介绍一下 io_cq_ring 结构各个字段的作用:

  • head:环形队列的头指针。
  • tail:环形队列的尾指针。
  • ring_entries:已完成的 I/O 操作总数。
  • cqes:用于保存 I/O 操作结果的环形队列数组,其元素类型为 io_uring_cqe 结构。

io_cq_ring 的结构图如下所示:

内核也会将 完成队列 映射到应用程序的内存空间,这样应用程序就可以通过读取完成队列来获取 I/O 操作的结果。而不用通过使用系统调用来获取,从而避免了不必要的上下文切换。

3. SQ 线程

前面介绍了 io_uring 怎么通过共享 提交队列完成队列 来避免不必要的系统调用,但应用程序将 I/O 操作提交到 提交队列 后,内核什么时候从 提交队列 中获取要进行的 I/O 操作,并且发起 I/O 请求呢?

当用户使用 SQPOLL 模式(指定了 IORING_SETUP_SQPOLL 标志)创建 io_uring 时,内核将会创建一个名为 io_uring-sq 的内核线程(称为 SQ 线程),此内核线程会不断从 提交队列 中读取 I/O 操作,并且发起 I/O 请求。

当 I/O 请求完成以后,SQ 线程将会把 I/O 操作的结果写入到 完成队列 中,应用程序就可以从 完成队列 中读取 I/O 操作的结果。

如下图所示:

我们简单总结下 io_uring 的操作步骤:

  • 第一步:应用程序通过向 io_uring提交队列 提交 I/O 操作。
  • 第二步:SQ内核线程从 提交队列 中读取 I/O 操作。
  • 第三步:SQ内核线程发起 I/O 请求。
  • 第四步:I/O 请求完成后,SQ内核线程会将 I/O 请求的结果写入到 io_uring完成队列 中。
  • 第五步:应用程序可以通过从 完成队列 中读取到 I/O 操作的结果。

4. 总结

io_uring 主要通过用户态与内核态共享内存的途径,来摒弃使用系统调用来提交 I/O 操作和获取 I/O 操作的结果,从而避免了上下文切换的情况。另外,由于用户态进程与内核态线程通过共享内存的方式通信,从而避免了内存拷贝的过程,提升了 I/O 操作的性能。

所以,io_uring 主要通过两个优化点来提升 I/O 操作的性能:

  • 摒弃使用系统调用来提交 I/O 操作和获取 I/O 操作结果。
  • 减少用户态与内核态之间的内存拷贝。
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-11-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Linux内核那些事 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 减少系统调用
  • 2. 提交队列与完成队列
    • 提交队列
      • 提交队列项
        • 完成队列
        • 3. SQ 线程
        • 4. 总结
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档