简读分享 | 汪逢生 编辑 | 乔剑博
论文题目
Restormer: Efficient Transformer for High-Resolution Image Restoration
论文摘要
通过MHSA与FFN进行改进,本文提出一种高效Transformer,它可以捕获长距离像素相关性,同时可适用于大尺寸图像。所提方案Restormer (Restoration Transformer)在多个图像复原任务上取得了SOTA性能,包含图像去雨、图像去运动模糊、图像去散焦模糊以及图像降噪(包含合成与真实噪声)。本文主要贡献包含以下几点:提出了一种编解码Transformer用于高分辨率图像上多尺度local-global表达学习,且无需进行局部窗口拆分; 提出一种MDTA(Multi-Dconv head Transposed Attention)模块,它有助于进行局部与非局部相关特征聚合,可以高效的进行高分辨率图像处理; 提出一种GDFN(Gated-Dconv Feed-forward Network)模块,它可以执行可控特征变换,即抑制low-level信息特征,仅保留有用信息。
论文链接
https://arxiv.org/abs/2111.09881