前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >西电 NeurIPS 2022 | 基于结构聚类的异质图自监督学习

西电 NeurIPS 2022 | 基于结构聚类的异质图自监督学习

作者头像
AI科技评论
发布2023-01-03 19:47:05
7950
发布2023-01-03 19:47:05
举报
文章被收录于专栏:AI科技评论AI科技评论

论文作者丨杨亚明,管子玉,王哲,赵伟,徐偲,陆维港,黄健斌

论文单位丨西安电子科技大学,计算机科学与技术学院

1

引言

现阶段,图(Graph)上的自监督学习大多都遵循图对比学习框架,这些方法通常需要先构造一系列的正样本对以及负样本对,然后通过在低维表示空间中拉近正样本并且推远负样本来学习节点/图的表示。

目前,研究者们已经探索了节点丢弃、连边扰动等各种生成正样本的策略,以及特征打乱、批次采样等各种生成负样本的策略。然而,已有研究工作表明,这些正、负样本的生成策略是数据集敏感的。

例如,GraphCL 通过系统性的研究发现连边扰动对社交网络比较有益,但是对生物化学网络可能有负面作用。InfoGCL 发现负样本对于更稀疏的图可能更有益。因此,在实践中,研究者们需要根据数据集以及手头任务的实际情况来探索、寻找合适的构造正、负样本的策略,这限制了已有方法的灵活性与泛化性。为了有效地应对这个问题,在本项研究中,我们提出一个基于结构聚类的异质图自监督学习方法SHGP,它无需任何正样本或者负样本。

2

方法

图1 模型整体架构图

我们的主要思路是通过对异质图执行结构聚类来产生聚类标签,并利用聚类标签来监督异质图神经网络的训练。如图1中的模型架构图所示,SHGP主要包括两个模块,Att-HGNN模块可以被实现为任何基于注意力聚合机制的异质图神经网络(我们采用ie-HGCN模型,请参考:《AI 科技评论》往期推送),它的作用是计算节点的表示:

Att-LPA模块将经典的标签传播算法LPA以及Att-HGNN中的注意力聚合机制进行了有机的结合,它的作用是在异质图上执行结构聚类,并将得到的聚类标签当做伪标签:

这两个模块共享相同的注意力聚合机制,即,Att-HGNN和Att-LPA在每一次前向过程中都执行相同的注意力聚合,区别是Att-HGNN聚合的是(投影后的)特征,而Att-LPA聚合的是上一轮产生的伪标签,两者都有着完全相同的注意力聚合系数。我们在Att-HGNN的顶层构建一个softmax分类器,并将节点表示输入到其中来预测节点标签。模型的损失为节点预测与节点伪标签之间的交叉熵:

计算得到损失以后,我们利用梯度下降来优化所有的模型参数:

随着优化过程的进行,模型会学习到越来越好的注意力分布(包括其他参数)。更好的注意力分布则会在下一轮迭代中促进Att-HGNN和Att-LPA分别产生更好的节点嵌入(以及预测)和伪标签,进而促进模型学习得到更好的参数。这样,两个模块可以紧密地相互作用,并相互增强对方,最终使得模型学习得到具有判别性的节点表示。

3

实验

我们对节点的预训练表示进行聚类。在每个数据集上,我们利用𝐾-means算法来将节点的表示向量进行聚类。实验结果展示在图2中 , 可以看到,SHGP在该任务中展现了最优的整体性能。特别是,在MAG数据集上,SHGP的性能显著地超过了其他基线方法,显示了它的优越性。

图2 节点聚类结果

我们将模型学习到的节点表示进行可视化。首先利用t-SNE算法将节点的表示向量映射到二维欧式空间,然后利用matplotlib将其进行可视化,并根据节点的真实标签对其进行染色。图3中展示了可视化结果,可以看到,SHGP的每个类都有着很好的内聚性,而类与类之间的界限非常清晰光滑。这说明SHGP能够在不需要任何真实标签的情况下,有效地学习到具有判别性的节点表示。

图3 节点表示可视化结果

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2023-01-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技评论 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档