前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究

MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究

原创
作者头像
拓端
发布2023-01-13 23:37:11
3420
发布2023-01-13 23:37:11
举报
文章被收录于专栏:拓端tecdat拓端tecdat拓端tecdat

全文链接:http://tecdat.cn/?p=31303

原文出处:拓端数据部落公众号

分析师:Jingsong Liu

CT技术伴随着一定剂量的辐射,会对患者的身体健康造成影响,而且 高剂量的辐射会损害人体的遗传物质,甚至造成不可逆的损伤,进而诱发癌症。 因此,如何在保证成像质量的前提下尽可能地降低 CT 辐射剂量一直是科学家们 研究的热点目标之一。此外,传统的CT扫描技术只能显示患者体内病灶的形态, 无法显示目标结构的化学成分信息。由于不同化学组分的生物组织经过 X 射线扫描后可能会具有相近甚至相同的衰减系数,从而导致成像不准确进而造成误诊。

解决方案

本文利用杜克大学所提供的 XCAT 软件,构建人体模型,然后使用 MATLAB 仿真出所构建模型基于能谱 CT 的投影域物质分解数据,再利用深度学习技术对 所得到的 CT 成像数据进行学习,构建可以识别人体骨骼和软组织的 CT 图像分解模型。所得到的模型可以在较低辐射剂量的条件下,利用能谱 CT 和深度学习 技术的原理,得到更加准确的 CT 重建图像。相较于传统 CT,可以实现在更低 的辐射剂量下得到更多更准确的人体内部组织结构信息的目的。这种最新的 CT 成像技术,将为医生提供患者更加准确的组织、病例信息,为医生做出准确高效 的诊断提供强大的信息基础。与此同时,也极大地降低了患者所承受的医源辐射剂量,保证了患者在接受诊疗的过程中不再受到二次伤害,为患者的健康提供了 重要保障。

数据源准备

对于数据最深层的需求来自 U-net 网络模型的训练。本项目的实验由于实验条件受限,使用的是个人 PC 机,运算能力较小,故选取较小的训练集和测试集。本项目初步选取 30 张 CT 图片作为 U-net 网络的训练集,每一张图片均由 MATLAB 所仿真的能谱 CT 模型得到。每一张图片需要由1-140keV下的 140 个 XCAT 人体模型拟合得到(因此,本项目共需要构建 4200 个不同的 XCAT 人体模型。这 4200个模型,分属 30个不同的部位,每一个部位都分别由 1-140keV 的 X 射线模拟照射得到 140 个不同的模型。

特征转换

基于本章中所介绍的能谱 CT 重建理论,本项目选用人体组织中的骨骼和软组 织作为物质分解的两种基物质,利用 MATLAB 实现其具体算法。根据本章中对于基物质分解模型理论的详细介绍和各个公式,结合试验所得人体骨骼和软组织 的线性衰减系数,只需很短的代码就可以实现物质分解模型的仿真。本节试验目的是为 U-net 物质分解模型提供训练集和测试集。具体为利用 MATLAB 仿真出 基物质分解模型,将原始的能谱 CT 成像结果分解为骨骼和软组织,作为对应影 像的标签。利用所得到的高、低能谱成像数据作为输入。

划分训练集和测试集

image.png
image.png

建模

U-net 网络结构是全卷积神经网络( FCN )的一种,是一种广泛应用于医学 图像分割领域的深度学习网络,它是由弗莱堡大学 Olaf 在细胞影像学分割比赛 中提出的。由于该网络结构酷似英文字母 “U ” ,故被称为 U-net 。该网络由编码层和解码层两部分组成。其中编码层主要作用是提取图片的上下文信息,解码层则对图片中的目标区域进行定位。 U-net 网络采取数据增强策略可以实现对于样本较少的数据的准确学习。 U-net 网络结构中没有全连接层,因此可以大幅度地减少所需要的学习的参数量,极大地提高了网络结构的学习效率。

image.png
image.png

实验一采用高、低能谱图像作为输入数据,以软组织分割图像作为标签,训练 U-net 网络。网络训练结果如下

image.png
image.png
image.png
image.png

测试结果为:

1.png
1.png

由上述实验结果可知,两个实验随着训练次数的增加,它们所得到网络的准确率都逐渐上升至接近1的值并趋于稳定,而损失函数的值也逐渐减小并趋于稳定。这说明这两个实验训练所得到的模型最终都收敛,因而这两个基物质分割网络是稳定有效的。

关于作者

image.png
image.png

在此对Jingsong Liu对本文所作的贡献表示诚挚感谢,他在上海财经大学完成了金融信息工程硕士学位,擅长机器学习、数理金融、数据分析。


QQ截图20220707173534.png
QQ截图20220707173534.png

最受欢迎的见解

1.R语言实现CNN(卷积神经网络)模型进行回归

2.r语言实现拟合神经网络预测和结果可视化

3.python用遗传算法-神经网络-模糊逻辑控制算法对乐透分析

4.R语言结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析

5.Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性

6.Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类

7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译

8.R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测

9.Python用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID-19新冠疫情新增人数时间序列预测

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 全文链接:http://tecdat.cn/?p=31303
  • 原文出处:拓端数据部落公众号
  • 分析师:Jingsong Liu
  • 解决方案
  • 数据源准备
  • 特征转换
  • 划分训练集和测试集
  • 建模
  • 关于作者
相关产品与服务
机器翻译
机器翻译(Tencent Machine Translation,TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档