Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >Office2016修改默认安装路径

Office2016修改默认安装路径

作者头像
Lcry
发布于 2022-11-29 08:38:23
发布于 2022-11-29 08:38:23
3.1K02
代码可运行
举报
文章被收录于专栏:Lcry个人博客Lcry个人博客
运行总次数:2
代码可运行

可能很多人在安装Office2016时候直接打开setup.exe就开始安装了,默认路径在C盘,但是有时候C盘空间小,就想改路径,所以需要采取修改注册表的方法。

一、打开注册表、win+R-输入regedit

二、定位到计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion,导出全部注册表;

三、找到如下三项,先导出注册表保存原来的键值,然后修改为你希望的安装路径。 ProgramFilesDir ProgramFilesDir (x86) ProgramW6432Dir

四、改完后在此点击setup.exe就可以按照到指定目录了。

五、当软件提示安装完成,此时已经将office软件安装到相应的位置。我们点开刚刚保存的reg文件,出现图片所示提示时,点击“是(Y)”,这样就将注册表的值恢复到原来的样子。如果遇到无法导入的情况,我们只要重新回到刚刚注册表的位置,手动修改数值为初始值即可。

六、将Office的所有快捷方式修改路径到安装路径,也可以找到应用程序位置直接重新创建快捷方式到桌面。

参考链接: https://jingyan.baidu.com/article/77b8dc7f8a7e2e6174eab628.html

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-09-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
OpenCV二维Mat数组(二级指针)在CUDA中的使用
  CUDA用于并行计算非常方便,但是GPU与CPU之间的交互,比如传递参数等相对麻烦一些。在写CUDA核函数的时候形参往往会有很多个,动辄达到10-20个,如果能够在CPU中提前把数据组织好,比如使用二维数组,这样能够省去很多参数,在核函数中可以使用二维数组那样去取数据简化代码结构。当然使用二维数据会增加GPU内存的访问次数,不可避免会影响效率,这个不是今天讨论的重点了。   举两个代码栗子来说明二维数组在CUDA中的使用(亲测可用): 1. 普通二维数组示例: 输入:二维数组A(8行4列) 输出:二维数
一棹烟波
2018/01/12
3.3K0
OpenCV二维Mat数组(二级指针)在CUDA中的使用
快来操纵你的GPU| CUDA编程入门极简教程
2006年,NVIDIA公司发布了CUDA(http://docs.nvidia.com/cuda/),CUDA是建立在NVIDIA的CPUs上的一个通用并行计算平台和编程模型,基于CUDA编程可以利用GPUs的并行计算引擎来更加高效地解决比较复杂的计算难题。近年来,GPU最成功的一个应用就是深度学习领域,基于GPU的并行计算已经成为训练深度学习模型的标配。目前,最新的CUDA版本为CUDA 9。
机器学习算法工程师
2018/07/27
5.1K0
快来操纵你的GPU| CUDA编程入门极简教程
CUDA编程之线程模型
一个kernel结构如下:Kernel<<>>(param1, param2, …)
AI异构
2020/07/29
2.8K0
CUDA编程之线程模型
浅析GPU计算——cuda编程
        在《浅析GPU计算——CPU和GPU的选择》一文中,我们分析了在遇到什么瓶颈时需要考虑使用GPU去进行计算。本文将结合cuda编程来讲解实际应用例子。(转载请指明出于breaksoftware的csdn博客)
方亮
2019/01/16
2.6K0
为什么深度学习模型在GPU上运行更快?
当前,提到深度学习,我们很自然地会想到利用GPU来提升运算效率。GPU最初是为了加速图像渲染和2D、3D图形处理而设计的。但它们强大的并行处理能力,使得它们在深度学习等更广泛的领域中也发挥了重要作用。
数据科学工厂
2024/07/05
1900
为什么深度学习模型在GPU上运行更快?
AI部署篇 | CUDA学习笔记1:向量相加与GPU优化(附CUDA C代码)
GPU并不是一个独立运行的计算平台,而需要与CPU协同工作,也可以把GPU看成是CPU的协处理器,因此当在说GPU并行计算时,其实是指的基于CPU+GPU的异构计算架构。在异构计算架构中,GPU与CPU通过PCIe总线连接在一起进行协同工作,CPU所在位置称为为主机端(host),而GPU所在位置称为设备端(device),如下图所示。
集智书童公众号
2022/01/05
2.8K0
AI部署篇 | CUDA学习笔记1:向量相加与GPU优化(附CUDA C代码)
CUDA并行编程概述
CUDA是英伟达推出的GPU架构平台,通过GPU强大的并行执行效率,为计算密集型应用加速,CUDA文件以.cu结尾,支持C++语言编写,在使用CUDA前需要下载 CUDA Toolkit
DearXuan
2022/01/19
8430
积分图实现均值滤波的CUDA代码
没想到我2010年买的笔记本显卡GT330M 竟然还能跑CUDA,果断小试了一把,环境为CUDA6.5+VS2012,写了一个积分图实现均值滤波。类似于OpenCV的blur()函数。 使用lena.
一棹烟波
2018/01/12
1.9K0
积分图实现均值滤波的CUDA代码
【参加CUDA线上训练营】--CUDA编程模型线程组织
GPU在管理线程的时候是以block为单元调度到SM上执行,每个block中以warp作为一次执行的单位,每个warp包括32个线程。
云帆沧海
2024/01/17
2030
【参加CUDA线上训练营】--CUDA编程模型线程组织
CUDA-入门(转)
CUDA,Compute Unified Device Architecture的简称,是由NVIDIA公司创立的基于他们公司生产的图形处理器GPUs(Graphics Processing Units,可以通俗的理解为显卡)的一个并行计算平台和编程模型。
祝你万事顺利
2019/06/03
1.7K0
CUDA 02 - 逻辑模型
CUDA逻辑模型是异构模型, 需要CPU和GPU协同工作. 在CUDA中, host和device是两个重要概念, host是指CPU及其内存, device是指GPU及其内存. 典型的CUDA程序的执行流程如下:
Reck Zhang
2021/08/11
5290
CUDA 02 - 逻辑模型
2020-10-21CUDA从入门到精通
在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择。还有不到一年毕业,怕是毕业后这些技术也就随毕业而去,准备这个暑假开辟一个CUDA专栏,从入门到精通,步步为营,顺便分享设计的一些经验教训,希望能给学习CUDA的童鞋提供一定指导。个人能力所及,错误难免,欢迎讨论。
爱笑的架构师
2020/10/28
7280
2020-10-21CUDA从入门到精通
英伟达CUDA架构核心概念及入门示例
理解英伟达CUDA架构涉及几个核心概念,这些概念共同构成了CUDA并行计算平台的基础。 1. SIMT(Single Instruction Multiple Thread)架构 CUDA架构基于SIMT模型,这意味着单个指令可以被多个线程并行执行。每个线程代表了最小的执行单位,而线程被组织成线程块(Thread Block),进一步被组织成网格(Grid)。这种层级结构允许程序员设计高度并行的算法,充分利用GPU的并行计算核心。 2. 层级结构 - 线程(Threads): 执行具体计算任务的最小单位。 - 线程块(Thread Blocks): 一组线程,它们共享一些资源,如共享内存,并作为一个单元被调度。 - 网格(Grid): 包含多个线程块,形成执行任务的整体结构。 3. 内存模型 - 全局内存: 所有线程均可访问,但访问速度相对较慢。 - 共享内存: 位于同一线程块内的线程共享,访问速度快,常用于减少内存访问延迟。 - 常量内存和纹理内存: 优化特定类型数据访问的内存类型。 - 寄存器: 最快速的存储,每个线程独有,但数量有限。 4. 同步机制 屏蔽同步(Barrier Synchronization) 通过同步点确保线程块内或网格内的所有线程达到某个执行点后再继续,保证数据一致性。 5. CUDA指令集架构(ISA) CUDA提供了专门的指令集,允许GPU执行并行计算任务。这些指令针对SIMT架构优化,支持高效的数据并行操作。 6. 编程模型 CUDA编程模型允许开发者使用C/C++等高级语言编写程序,通过扩展如`__global__`, `__device__`等关键字定义GPU执行的函数(核函数,kernel functions)。核函数会在GPU上并行执行,而CPU代码负责调度这些核函数并在CPU与GPU之间管理数据传输。 7. 软件栈 CUDA包含一系列工具和库,如nvcc编译器、CUDA runtime、性能分析工具、数学库(如cuFFT, cuBLAS)、深度学习库(如cuDNN)等,为开发者提供了完整的开发环境。
用户7353950
2024/07/05
5010
英伟达CUDA架构核心概念及入门示例
CUDA—使用GPU暴力激活成功教程密码
GPU支持大规模的并行加速运算,胜在量上,CPU处理大量的并行运算显得力不从心,它是胜在逻辑上。利用显卡加速的应用越来越多,但如果说GPU即将或最终将替代CPU还有点言过其实,二者最终将优势互补,各尽所能。
全栈程序员站长
2022/09/23
5100
CUDA—使用GPU暴力激活成功教程密码
【AI系统】从 CUDA 对 AI 芯片思考
从技术的角度重新看英伟达生态,有很多值得借鉴的方面。本文将主要从流水编排、SIMT 前端、分支预测和交互方式等方面进行分析,同时对比 DSA 架构,思考可以从英伟达 CUDA 中借鉴的要点。
用户11307734
2024/11/27
1120
Udacity并行计算课程笔记-The GPU Programming Model
一、传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors(更多处理器) 二、CPU & GPU CPU更加侧重执行时间,做到延时小 GPU则侧重吞吐量,能够执行大量的计算 更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人。 总结起来相比于CPU,GPU有
marsggbo
2018/01/23
1.2K0
Udacity并行计算课程笔记-The GPU Programming Model
【AI系统】SIMD & SIMT 与芯片架构
为了进一步探讨 SIMD/SIMT 与 AI 芯片之间的关系,本文将详细介绍 SIMD 单指令多数据和 SIMT 单指令多线程的计算本质,以及对 NVIDIA CUDA 底层实现 SIMD/SIMT 的原理进行讲解。
用户11307734
2024/11/27
1460
《GPU高性能编程 CUDA实战》(CUDA By Example)读书笔记
写在最前 这本书是2011年出版的,按照计算机的发展速度来说已经算是上古书籍了,不过由于其简单易懂,仍旧被推荐为入门神书。先上封面: 由于书比较老,而且由于学习的目的不同,这里只介绍了基础
用户1148523
2018/01/09
2.9K0
《GPU高性能编程 CUDA实战》(CUDA By Example)读书笔记
关于图像的二维卷积各种版本的实现(C++,Cuda和mex)
该文介绍了利用卷积核对图像进行处理的一种方法,包括其原理、实现步骤和代码示例。
码科智能
2018/01/02
2.9K0
CUDA编程(机械编程)
参考了很多大神的内容,并非完全原创,只是为了查漏补缺,记录自己的学习过程。个人水平有限,错误难免,欢迎讨论。
全栈程序员站长
2022/08/01
1.1K0
CUDA编程(机械编程)
推荐阅读
相关推荐
OpenCV二维Mat数组(二级指针)在CUDA中的使用
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验