前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据、算法、场景:工程化的“三驾马车”

数据、算法、场景:工程化的“三驾马车”

作者头像
IT阅读排行榜
发布2023-02-13 17:54:33
3550
发布2023-02-13 17:54:33
举报
文章被收录于专栏:华章科技

作者:陆兴海 彭华盛 编著

来源:大数据DT(ID:hzdashuju)

人们对新事物的认知过程总是螺旋式迭代演进的,对于智能运维也是如此,智能运维是运维发展的方向,而且是一个长期的过程—从经验主义到数据驱动,再回归到业务驱动的过程。

从2016年对于Gartner的概念的理解,到之后每一年不断的探索与实践,到2020年,在笔者参加的智能运维国家标准编写组会议上,行业内达成了高度的、更加面向现实的共识:以数据为基础、以场景为导向、以算法为支撑,如图2-1所示。

▲图2-1 行业对智能运维发展演进的理解

智能运维一定来源于非常好的数据基础,同时,如果没有明确的业务场景,或者需求,或者功能方面的落脚点,所谓的智能化就是为了AI而AI,也没有意义。工程化算法是要拟合数据的,根据数据和场景需求才能选择或研发合适的算法。只有具备上述三个条件,才能真正形成一个工程化落地的智能运维,如图2-2所示。

▲图2-2 “三架马车”工程化落地的智能运维

需要着重提及的是,以往很多用户忽略了作为智能业务运维“基石”的运维数据的重要性。

为切实落地企业的智能业务运维规划,一方面要强调运维数据的基础作用,另一方面要形成运维数据治理与应用的全局体系,围绕规划、系统与实施三个核心阶段工作,面向运维数据的全生命周期与业务导向结果,从数据的整体规划、运维数据源、数据采集、数据的计算与处理、指标管理体系的规划与实施、专业运维数据库的建立、数据的典型应用场景等多角度进行思考。

但需要正视的是我们对运维数据的认识及应用还处于皮毛阶段,虽有理念但缺乏必要的、可执行的方法。随着运维数据平台的建设,将极有可能出现当前大数据领域出现的数据孤岛、数据不可用、数据质量不高、融合应用难、有数据不会用等诸多问题。上述问题,在当前运维领域资源投入不足时显得尤其重要。

借鉴大数据领域数据治理的经验,反思运维数据平台建设应该关注的问题,减少不必要的坑,做好运维数据治理,让运维数据更好用、用得更好,完善运维数字化工作空间。

在运维领域,运维数据分布在大量的机器、软件和“监管控析”工具上,除了上面大数据领域提到的数据孤岛、质量不高、数据不可知、数据服务不够的痛点外,运维数据还有以下突出痛点:

一、资源投入不够。

从组织的定位看,运维属于企业后台中的后台部门,所做的事甚至都很难让IT条线的产品、项目、开发明白系统架构越来越复杂、迭代频率越来越高、外部环境越来越严峻等需要持续性的运维投入,更不要说让IT条线以外的部门理解你在做的事,在运维的资源投入通常是不够的。

所以,运维数据体系建设要强调投入产出比,在有限的资源投入下,收获更多的数据价值。

二、数据标准化比例低。

运维数据主要包括监控、日志、性能、配置、流程、应用运行数据。除了统一监控报警、配置、机器日志、ITIL里的几大流程的数据格式有相关标准,其他数据存在格式众多、非结构化、实时性要求高、海量数据、采集方式复杂等特点,可以说运维源数据天生就是非标准的,要在“资源投入不够”的背景下,采用业务大数据的运作模式比较困难。

三、缺乏成熟的方法。

虽然行业也提出了ITOA、DataOps、AIOps等运维数据分析应用的思路,但是缺少一些成熟、全面的数据建模、分析、应用的方法,主流的运维数据方案目前主要围绕监控和应急领域探索。

四、缺乏人才。

如“资源投入不够”这点提到的背景,因为投入不足,很难吸引到足够的人才投入到运维数据分析领域。

通俗一点来说,就是运维数据分析要借鉴当前传统大数据领域数据治理的经验,提高投入产出比,少走弯路,少跳坑。

本文摘编自《运维数据治理:构筑智能运维的基石》(ISBN:978-7-111-70475-1),经出版方授权发布。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-08-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据DT 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档