皮带撕裂监测识别系统通过yolov5网络模型深度学习技术,皮带撕裂监测识别系统自动对运输机皮带状态进行全天候不间断实时检测,皮带撕裂监测识别系统检测到撕裂跑偏时,皮带撕裂监测识别系统立即抓拍告警及时同步信号给运输机停止运输机。YOLOv5是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。YOLOv5是YOLO系列的一个延申,可以看作是基于YOLOv3、YOLOv4的改进作品。YOLOv5没有相应的论文说明,但是作者在Github上积极地开放源代码,通过对源码分析,我们也能很快地了解YOLOv5的网络架构和工作原理。
和YOLOv4一样,对输入的图像进行Mosaic数据增强。Mosaic数据增强的作者也是来自Yolov5团队的成员,通过随机缩放、随机裁剪、随机排布的方式对不同图像进行拼接,采用Mosaic数据增强方法,不仅使图片能丰富检测目标的背景,而且能够提高小目标的检测效果。并且在BN计算的时候一次性会处理四张图片。骨干网路部分主要采用的是:Focus结构、CSP结构。其中 Focus 结构在YOLOv1-YOLOv4中没有引入,用于直接处理输入的图片。以YOLOv5s的结构为例,原始608x608x3的图像输入Focus结构,采用切片操作,先变成304x304x12的特征图,再经过一次32个卷积核的卷积操作,最终变成304x304x32的特征图。
在YOLO系列算法中,针对不同的数据集,都需要设定特定长宽的锚点框。在网络训练阶段,模型在初始锚点框的基础上输出对应的预测框,计算其与GT框之间的差距,并执行反向更新操作,从而更新整个网络的参数,因此设定初始锚点框也是比较关键的一环。在YOLOv3和YOLOv4检测算法中,训练不同的数据集时,都是通过单独的程序运行来获得初始锚点框。YOLOv5中将此功能嵌入到代码中,每次训练时,根据数据集的名称自适应的计算出最佳的锚点框,用户可以根据自己的需求将功能关闭或者打开,具体的指令为parser.add_argument(’–noautoanchor’, action=‘store_ true’, help=‘disable autoanchor check’),如果需要打开,只需要在训练代码时增加–noautoanch or选项即可。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。