之前我们介绍了常用的三种合并datasets
的方法: 👇
Harmony
;rliger
;Seurat
。本期我们继续介绍其中的rliger
包,如何用于3'
和5'
数据的合并。🤒rm(list = ls())
library(Seurat)
library(SeuratDisk)
library(SeuratWrappers)
library(patchwork)
library(harmony)
library(rliger)
library(RColorBrewer)
library(tidyverse)
library(reshape2)
library(ggsci)
library(ggstatsplot)
这里我们提供1
个3’ PBMC dataset
和1
个5’ PBMC dataset
。🥰
matrix_3p <- Read10X_h5("./3p_pbmc10k_filt.h5",use.names = T)
matrix_5p <- Read10X_h5("./5p_pbmc10k_filt.h5",use.names = T)$`Gene Expression`
srat_3p <- CreateSeuratObject(matrix_3p,project = "pbmc10k_3p")
srat_5p <- CreateSeuratObject(matrix_5p,project = "pbmc10k_5p")
srat_3p
srat_5p
Note! 5' datset
中还有一个assay
,即VDJ data
。🤜
这里我们先用merge
将2个数据集简单合并在一起。(这里我们默认做过初步过滤了哈,具体的大家可以看一下第一期的教学。)😘
pbmc_liger <- merge(srat_3p,srat_5p)
我们在这里做一下Normalization
,寻找高变基因等等标准操作。😁
Note! 这里需要跟大家说下,rlinger
在ScaleData
时没有将数据中心化
,我们需要设置为F
。🤨
pbmc_liger <- NormalizeData(pbmc_liger)
pbmc_liger <- FindVariableFeatures(pbmc_liger)
pbmc_liger <- ScaleData(pbmc_liger, split.by = "orig.ident", do.center = F)
pbmc_liger <- RunOptimizeALS(pbmc_liger, k = 30, lambda = 5, split.by = "orig.ident")
pbmc_liger <- RunQuantileNorm(pbmc_liger, split.by = "orig.ident")
pbmc_liger <- FindNeighbors(pbmc_liger,reduction = "iNMF",k.param = 10,dims = 1:30)
pbmc_liger <- FindClusters(pbmc_liger)
pbmc_liger <- RunUMAP(pbmc_liger, dims = 1:ncol(pbmc_liger[["iNMF"]]),
reduction = "iNMF", verbose = F)
pbmc_liger <- SetIdent(pbmc_liger,value = "orig.ident")
p1 <- DimPlot(pbmc_liger,reduction = "umap") +
scale_color_npg()+
plot_annotation(title = "10k 3' PBMC and 10k 5' PBMC cells, after integration (LIGER)")
p2 <- DimPlot(pbmc_liger, reduction = "umap", group.by = "orig.ident",
pt.size = .1, split.by = 'orig.ident') +
scale_color_npg()+
NoLegend()
p1 + p2
pbmc_liger <- SetIdent(pbmc_liger,value = "seurat_clusters")
ncluster <- length(unique(pbmc_liger[[]]$seurat_clusters))
mycol <- colorRampPalette(brewer.pal(8, "Set2"))(ncluster)
DimPlot(pbmc_liger,reduction = "umap",label = T,
cols = mycol, repel = T) +
NoLegend()
我们看下各个clusters
在两个datasets
各有多少细胞。🧐
count_table <- table(pbmc_liger@meta.data$seurat_clusters, pbmc_liger@meta.data$orig.ident)
count_table
#### 可视化
count_table %>%
as.data.frame() %>%
ggbarstats(x = Var2,
y = Var1,
counts = Freq)+
scale_fill_npg()
最后祝大家早日不卷!~