对于只有只有部分重叠的datasets
,合并方法我们依然可以采用Seurat
、Harmony
,rliger
包,本期介绍一下rliger
包的用法。
rm(list = ls())
library(Seurat)
library(SeuratDisk)
library(SeuratWrappers)
library(patchwork)
library(harmony)
library(rliger)
library(RColorBrewer)
library(tidyverse)
library(reshape2)
library(ggsci)
library(ggstatsplot)
这里我们提供1
个3’ PBMC dataset
和1
个whole blood dataset
。🤗
umi_gz <- gzfile("./GSE149938_umi_matrix.csv.gz",'rt')
umi <- read.csv(umi_gz,check.names = F,quote = "")
matrix_3p <- Read10X_h5("./3p_pbmc10k_filt.h5",use.names = T)
创建Seurat
对象。🧐
srat_wb <- CreateSeuratObject(t(umi),project = "whole_blood")
srat_3p <- CreateSeuratObject(matrix_3p,project = "pbmc10k_3p")
rm(umi_gz)
rm(umi)
rm(matrix_3p)
srat_wb
srat_3p
为了方便后续分析,这里我们对metadata
进行一下注释修改。
colnames(srat_wb@meta.data)[1] <- "cell_type"
srat_wb@meta.data$orig.ident <- "whole_blood"
srat_wb@meta.data$orig.ident <- as.factor(srat_wb@meta.data$orig.ident)
head(srat_wb[[]])
这里我们先用merge
将2个数据集简单合并在一起。(这里我们默认做过初步过滤了哈,具体的大家可以看一下之前的教学。)😘
wb_liger <- merge(srat_3p,srat_wb)
我们在这里做一下Normalization
,寻找高变基因等等标准操作。👀Note! 这里需要跟大家说下,rlinger
在ScaleData
时没有将数据中心化
,我们需要设置为F
。
wb_liger <- NormalizeData(wb_liger)
wb_liger <- FindVariableFeatures(wb_liger)
wb_liger <- ScaleData(wb_liger, split.by = "orig.ident", do.center = F)
wb_liger <- RunOptimizeALS(wb_liger, k = 30, lambda = 5, split.by = "orig.ident")
wb_liger <- RunQuantileNorm(wb_liger, split.by = "orig.ident")
wb_liger <- FindNeighbors(wb_liger,reduction = "iNMF",k.param = 10,dims = 1:30)
wb_liger <- FindClusters(wb_liger)
wb_liger <- RunUMAP(wb_liger, dims = 1:ncol(wb_liger[["iNMF"]]),
reduction = "iNMF",verbose = F)
wb_liger <- SetIdent(wb_liger,value = "orig.ident")
p1 <- DimPlot(wb_liger,reduction = "umap") +
scale_color_npg()+
plot_annotation(title = "10k 3' PBMC and 10k 5' PBMC cells, after integration (LIGER)")
p2 <- DimPlot(wb_liger, reduction = "umap",
group.by = "orig.ident", pt.size = .1, split.by = 'orig.ident') +
scale_color_npg()+
NoLegend()
p1 + p2
wb_liger <- SetIdent(wb_liger,value = "seurat_clusters")
ncluster <- length(unique(wb_liger[[]]$seurat_clusters))
mycol <- colorRampPalette(brewer.pal(8, "Set2"))(ncluster)
DimPlot(wb_liger,reduction = "umap",label = T,
cols = mycol, repel = T) +
NoLegend()
我们看下各个clusters
在两个datasets
各有多少细胞。
count_table <- table(wb_liger@meta.data$seurat_clusters, wb_liger@meta.data$orig.ident)
count_table
#### 可视化
count_table %>%
as.data.frame() %>%
ggbarstats(x = Var2,
y = Var1,
counts = Freq)+
scale_fill_npg()
最后祝大家早日不卷!~