前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习算法:K-NN(K近邻)

机器学习算法:K-NN(K近邻)

作者头像
数据科学工厂
发布2023-02-27 12:46:25
1K0
发布2023-02-27 12:46:25
举报
文章被收录于专栏:数据科学(冷冻工厂)

导读

本文[1]将介绍机器学习中的 K-最近邻算法K-Nearest Neighbors 是一种机器学习技术和算法,可用于回归和分类任务。

1. 简介

K-Nearest Neighbors

k-最近邻算法,也称为 kNNk-NN,是一种非参数、有监督的学习分类器,它使用邻近度对单个数据点的分组进行分类或预测。虽然它可以用于回归问题,但它通常用作分类算法,假设可以在彼此附近找到相似点。

对于分类问题,根据比重分配类别标签,即使用在给定数据点周围最多表示的标签。虽然这在技术上被认为是plurality voting(多数表决),但majority vote一词在书面语中更常用。这些术语之间的区别在于,majority voting在技术上需要超过 50% ,这主要适用于只有两个类别的情况。当您有多个类别时 - 例如四个类别,您不一定需要 50% 才能对一个类别做出结论;您可以分配一个占比超过 25% 的类别标签。Wisconsin-Madison大学用了一个例子[2]很好地总结了这一点。

kNN diagram

回归问题使用与分类问题类似的概念,但在这种情况下,取 k 个最近邻的平均值来对分类进行预测。主要区别是分类用于离散值,而回归用于连续值。但是,在进行分类之前,必须定义距离。欧几里得距离是最常用的,我们将在下面深入研究。

值得注意的是,kNN 算法也是lazy learning模型家族的一部分,这意味着所有计算都发生在进行分类或预测时。由于它严重依赖内存来存储其所有训练数据,因此也称为基于实例或基于内存的学习方法。

Evelyn Fix 和 Joseph Hodges 在 1951 年的这篇论文[3]中提出了围绕 kNN 模型的最初想法,而 Thomas Cover 在他的研究[4]中扩展了他们的概念,“Nearest Neighbor Pattern Classification”。虽然它不像以前那么受欢迎,但由于其简单性和准确性,它仍然是人们在数据科学中学习的首批算法之一。然而,随着数据集的增长,kNN 变得越来越低效,影响了模型的整体性能。它通常用于简单的推荐系统、模式识别、数据挖掘、金融市场预测、入侵检测等。

2. 距离度量

kNN距离指标计算

回顾一下,k-最近邻算法的目标是识别给定查询点的最近邻,以便我们可以为该点分配一个类标签。为了做到这一点,kNN 有几个要求:

  • 确定距离度量

为了确定哪些数据点最接近给定查询点,需要计算查询点与其他数据点之间的距离。这些距离度量有助于形成决策边界,将查询点划分为不同的区域。您通常会看到使用 Voronoi 图可视化的决策边界。

虽然您可以选择多种距离度量,但本文仅涵盖以下内容:

欧几里得距离(p=2):这是最常用的距离度量,仅限于实值( real-valued )向量。使用下面的公式,它测量查询点和被测量的另一个点之间的直线。

欧几里得距离公式

曼哈顿距离(p=1):这也是另一种流行的距离度量,它测量两点之间的绝对值。它也被称为出租车(taxicab)距离或城市街区(city block)距离,因为它通常用网格可视化,说明人们如何通过城市街道从一个地址导航到另一个地址。

曼哈顿距离公式

闵可夫斯基(Minkowski)距离:该距离度量是欧几里得和曼哈顿距离度量的广义形式。下面公式中的参数 p 允许创建其他距离度量。当 p 等于 2 时,这个公式表示欧几里得距离,p 等于 1 表示曼哈顿距离 。

Minkowski距离公式

汉明(Hamming)距离:这种技术通常与布尔或字符串向量一起使用,识别向量不匹配的点。因此,它也被称为重叠度量。可以用以下公式表示:

Hamming距离公式

例如,如果您有以下字符串,Hamming距离将为 2,因为只有两个值不同。

Example

3. K

k-NN 算法中的 k 值定义了将检查多少个邻居以确定查询点的分类。例如,如果 k=1,实例将被分配到与其单个最近邻相同的类。定义 k 是一种平衡行为,因为不同的值可能会导致过拟合或欠拟合。较低的 k 值可能具有较高的方差,但较低的偏差,较大的 k 值可能导致较高的偏差和较低的方差。k 的选择将很大程度上取决于输入数据,因为有许多异常值或噪声的数据可能会在 k 值较高时表现更好。总之,建议 k 使用奇数以避免分类歧义,交叉验证策略可以帮助您为数据集选择最佳 k。

4. Operates

KNN 算法在执行时经历了三个主要阶段:

  1. 将 K 设置为选定的邻居数。
  2. 计算测试数据与数据集之间的距离。
  3. 对计算的距离进行排序。
  4. 获取前 K 个条目的标签。
  5. 返回有关测试示例的预测结果。

希望深入研究,可以通过使用 Pythonscikit-learn 来了解有关 k-NN 算法的更多信息。以下代码是如何使用 kNN 模型创建和预测的示例:

代码语言:javascript
复制
from sklearn.neighbors import KNeighborsClassifier

model_name = ‘K-Nearest Neighbor Classifier’

`kNN`Classifier = KNeighborsClassifier(n_neighbors = 5, metric = ‘minkowski’, p=2)

`kNN`_model = Pipeline(steps=[(‘preprocessor’, preprocessorForFeatures), (‘classifier’ , `kNN`Classifier)])

`kNN`_model.fit(X_train, y_train)

y_pred = `kNN`_model.predict(X_test)

5. 应用

k-NN 算法已在各种问题中得到应用,主要是在分类中。其中一些用例包括:

  • 数据预处理

数据集经常有缺失值,但 kNN 算法可以在缺失数据插补的过程中估计这些值。

  • 推荐问题

使用来自网站的clickstream(点击流)数据,kNN 算法已用于向用户提供有关其他内容的自动推荐。这项研究[5]表明,用户被分配到特定组,并根据该组的用户行为,为他们提供推荐。然而,考虑到 kNN 的应用规模,这种方法对于较大的数据集可能不是最优的。

  • 金融

它还用于各种金融和经济用例。例如,一篇论文展示了如何在信用数据上使用 kNN 可以帮助银行评估向组织或个人提供贷款的风险。它用于确定贷款申请人的信用状况。

  • 生命健康

kNN 还应用于医疗保健行业,预测心脏病发作和前列腺癌的风险。该算法通过计算基因的表达来工作。

  • 模式识别

kNN 还有助于识别模式,例如文本和数字分类。这对于识别在表格或邮寄信封上的手写数字特别有帮助。

6. 优缺点

就像任何机器学习算法一样,k-NN 也有其优点和缺点。根据实际情况,它可能是也可能不是最优的选择。

6.1. 优势

  • 易于实现

鉴于算法的简单性和准确性,它是新数据科学家将学习的首批分类器之一。

  • 适应性强

随着新训练样本的添加,算法会根据任何新数据进行调整,因为所有训练数据都存储在内存中。

  • 超参数少:

kNN 只需要一个 k 值和一个距离度量,与其他机器学习算法相比,参数是很少的。

6.2. 不足

  • 数据规模

由于 kNN 是一种惰性算法,与其他分类器相比,它占用了更多的内存和数据存储。从时间和金钱的角度来看,这可能是昂贵的。更多的内存和存储将增加业务开支,而更多的数据可能需要更长的时间来计算。虽然已经创建了不同的数据结构(例如 Ball-Tree)来解决计算效率低下的问题,但根据业务问题,采用其他的分类器可能更好。

  • 维度

kNN 算法往往会成为维度灾难的受害者,这意味着它在高维数据输入时表现不佳。这有时也称为峰值现象,在算法达到最佳特征数量后,额外的特征会增加分类错误的数量,尤其是当样本尺寸更小。

  • 过拟合

由于“curse of dimensionality”(维度灾难),kNN 更容易出现过拟合。虽然利用特征选择和降维技术可以防止这种情况发生,但 k 的值也会影响模型的行为。较低的 k 值可能会过度拟合数据,而较高的 k 值往往会“平滑”预测值,因为它是对更大区域或邻域的值进行平均。但是,k 值太高,模型可能会欠拟合。

参考资料

[1]

Source: "https://www.ibm.com/topics/kNN"

[2]

Example: https://sebastianraschka.com/pdf/lecture-notes/stat479fs18/02_kNN_notes.pdf

[3]

Paper: https://apps.dtic.mil/sti/pdfs/ADA800276.pdf

[4]

Research: https://isl.stanford.edu/~cover/papers/transIT/0021cove.pdf

[5]

Research: https://www.researchgate.net/publication/267572060_Automated_Web_Usage_Data_Mining_and_Recommendation_System_using_K-Nearest_Neighbor_kNN_Classification_Method

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-11-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 冷冻工厂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 导读
  • 1. 简介
  • 2. 距离度量
  • 3. K
  • 4. Operates
  • 5. 应用
  • 6. 优缺点
    • 6.1. 优势
      • 6.2. 不足
        • 参考资料
        相关产品与服务
        主机安全
        主机安全(Cloud Workload Protection,CWP)基于腾讯安全积累的海量威胁数据,利用机器学习为用户提供资产管理、木马文件查杀、黑客入侵防御、漏洞风险预警及安全基线等安全防护服务,帮助企业构建服务器安全防护体系。现支持用户非腾讯云服务器统一进行安全防护,轻松共享腾讯云端安全情报,让私有数据中心拥有云上同等级别的安全体验。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档