论文地址: http://arxiv.org/pdf/2203.06311v2.pdf
来源: 清华大学
论文名称:ELLE: Efficient Lifelong Pre-training for Emerging Data
原文作者:Yujia Qin
内容提要
现有的预训练语言模型(PLM)通常使用固定的、不更新的数据进行训练,而忽略了在现实场景中,各种来源的数据可能会不断增长,而这需要PLM能够持续地整合新旧信息。虽然这个目标可以通过对所有新老数据重新大规模训练来实现,但众所周知,这样的过程在计算上是十分昂贵的。为此,本文提出了ELLE,旨在对新来的数据进行高效的持续预训练。具体来说,ELLE包括(1)功能维持的模型扩展,它能够灵活地扩展现有PLM的宽度和深度,以提高知识获取的效率;(2)预植领域提示词(prompt),从而让模型能够更好地区分预训练期间学到的通用知识,正确地激发下游任务的知识。我们在BERT和GPT上使用来自5个领域的数据来试验,结果表明ELLE在预训练效率和下游性能方面优于各种传统的持续学习方法。
主要框架及实验结果
声明:文章来自于网络,仅用于学习分享,版权归原作者所有。