前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【嵌入式开发】C语言 内存分配 地址 指针 数组 参数 实例解析

【嵌入式开发】C语言 内存分配 地址 指针 数组 参数 实例解析

作者头像
韩曙亮
发布2023-03-27 13:04:51
3.9K0
发布2023-03-27 13:04:51
举报
文章被收录于专栏:韩曙亮的移动开发专栏

Android源码看的鸭梨大啊, 补一下C语言基础 ... 

作者 : 万境绝尘

转载请注明出处http://blog.csdn.net/shulianghan/article/details/20472269

.

指针简介 : 指针式保存变量地址的变量;

-- 增加阅读难度 : 指针 和 goto 语句会增加程序的理解难度, 容易出现错误;

-- ANSI C : American National Standards Institute 美国国家标准学会, 即标准C;

-- 通用指针类型 : ANSI C中使用 void* 作为通用指针类型, 即指向void的指针, void 是空类型, void* 是空类型指针, 可以指向任意类型的地址;

1. void 与 void* 

(1) void 简介

void 作用

-- 限定参数 : 函数没有返回值, 需要使用 void 声明, 否则默认返回 int 类型;

-- 限定返回值 : 函数不接收参数, 使用 void 作为参数, 如果传入参数, 编译器就会报错;

使用void注意点

-- void不能表示变量 : void a, 这样定义是错误的;

-- 默认返回值 : C 中, 如果没有标明返回值类型, 默认的返回值不是 void, 是 int 类型;

-- void参数 : C 语言中参数是void, 传入参数不会出错, C++中传入参数会出错, 因此这里我们统一规定, 如果函数没有参数, 就定义为void;

.

(2) void*简介

void * 作用

-- 通用数据类型 : void * 指针可以存放任意类型数据的地址, 任何数据类型的指针都可以赋值给 void * 通用类型指针; -- 任意类型 : 如果 函数 的 参数 和 返回值 可以是任意类型, 就可以使用 void * 作为函数的 参数 或者 返回值;

使用void* 注意点

-- void * 与 其它类型互相赋值 : int * 变量可以赋值给 void * 变量, 但是void * 变量如果赋值给 int * 变量需要强转为 int * 类型;

-- void * 不允许进行 算数操作 : 标准C 中规定 void * 类型不允许进行 加减乘除 算数运算, 因为我们不知道这个类型的大小, GUN 中void * 等价于 char * ;

2. C 语言 程序内存分配

(1) 内存分区状况

栈区 (stack)

-- 分配, 释放方式 : 由编译器自动分配 和 释放;

-- 存放内容 : 局部变量, 参数;

-- 特点 : 具有 后进先出 特性, 适合用于 保存 回复 现场;

堆区 (heap)

-- 分配, 释放方式 : 由程序员手动 分配(malloc) 和 释放(free), 如果程序员没有释放, 那么程序退出的时候, 会自动释放;

-- 存放内容 : 存放程序运行中 动态分配 内存的数据;

-- 特点 : 大小不固定, 可能会动态的 放大 或 缩小;

堆区内存申请 

-- 申请过程 : OS中有一个记录空闲内存地址的链表, 如果程序员申请内存, 就会找到空间大于申请内存大小的节点, 将该节点从空间内存链表中删除, 并分配该节点; 

-- 剩余内存处理 : 系统会将多余的部分重新放回 空闲内存链表中;

-- 首地址记录大小 : 分配内存的首地址存放该堆的大小, 这样释放内存的时候才能正确执行; 

全局区/静态区 (数据段 data segment / bss segment)

-- 分配, 释放方式 : 编译器分配内存, 程序退出时系统自动释放内存;

-- 存放内容 : 全局变量, 静态变量;

-- 特点 : 全局变量 和 静态变量存储在一个区域, 初始化的两种变量 和 未初始化的 存储在不同区域, 但是两个区域是相邻的;

常量区 

-- 分配, 释放方式 : 退出程序由系统自动释放;

-- 存放内容 : 常量;

代码区 (text segment)

-- 分配, 释放方式 : 编译器分配内存, 程序退出时系统自动释放内存;

-- 存放内容 : 存放 程序的二进制代码, 和一些特殊常量;

内存存放顺序 (由上到下) : 栈区 -> 堆区 -> 全局区 -> 常量区 -> 代码区;

(2) 内存分配方式

全局内存分配

-- 生命周期 : 编译时分配内存, 程序退出后释放内存, 与 程序 的生命周期相同;

-- 存储内容 : 全局变量, 静态变量;

栈内存分配 :

-- 生命周期 : 函数执行时分配内存, 执行结束后释放内存;

-- 特点 : 该分配运算由处理器处理, 效率高, 但是栈内存控件有限;

堆内存分配

-- 生命周期 : 调用 malloc()开始分配, 调用 free()释放内存, 完全由程序员控制;

-- 谨慎使用 : 如果分配了 没有释放, 会造成内存泄露, 如果频繁 分配 释放 会出现内存碎片; 

(3) register变量

使用场景 : 如果 一个变量使用频率特别高, 可以将这个变量放在 CPU 的寄存器中;

-- 修饰限制 : 只有 局部变量 和 参数 可以被声明为 register变量, 全局 和 静态的不可以;

-- 数量限制 : CPU 寄存器 很宝贵, 不能定义太多register变量;

(4) extern 变量

extern变量概念 : 声明外部变量, 外部变量就是在函数的外部定义的变量, 在本函数中使用;

-- 作用域 : 从外部变量定义的位置开始, 知道本源码结束都可以使用, 但是只能在定义extern后面使用, 前面的代码不能使用;

-- 存放位置 : 外部变量 存放在 全局区;

extern变量作用 : 使用extern修饰外部变量, ① 扩展外部变量在本文件中的作用域, ② 将外部变量作用域从一个文件中扩展到工程中的其它文件;

extern声明外部变量的情况

-- 单个文件内声明 : 如果不定义在文件开头, 其作用范围只能是 定义位置开始, 文件结束位置结束;

-- 多个文件中声明 : 两个文件中用到一个外部变量, 只能定义一次, 编译 和 连接的时候, 如果没有这个外部变量, 系统会知道这个外部变量在别处定义, 将另一个文件中的外部变量扩展到本文件中;

extern编译原则

-- 本文件中能找到 : 编译器遇到 extern 的时候, 现在本文件中找外部变量的定义的位置, 如果找到, 就将作用域扩展到 定义的位置 知道文件结束;

-- 本文件中找不到 : 如果本文件中找不到, 连接其它文件找外部变量定义, 如果找到, 将外部变量作用域扩展到本文件中;

-- 外部文件找不到 : 报错;

使用效果 : extern 使用的时候, 可以不带数据类型;

-- 本文件 : int A = 0; 在第10行, extern A 在第一行, 那么A的作用域就扩展为从第一行到文件末尾;

-- 多文件 : 在任意文件中定义了 int A = 0; 在本文件中声明 extern A, 那么从当前位置到文件末尾都可以使用该变量;

(5) static变量 与 全局变量区别

static 变量 与 全局变量 相同点 : 全局变量是静态存储的, 存储的方式 和 位置基本相同;

static 变量 与 全局变量不用点 : 全局变量的作用域是 整个项目工程 横跨过个文件, 静态变量的作用域是 当前文件, 其它文件中使用是无效的;

变量存储位置 : 全局变量 和 静态变量 存放在 全局区/静态去, 局部变量存放在 栈区(普通变量, 指针变量内容) 和 堆区(指针变量指向的内容);

变量静态化

-- 局部变量 : 局部变量 加上 static , 相当于将局部变量的生命周期扩大到了整个文件, 作用域不改变;

-- 全局变量 : 全局变量 加上 static , 相当于将全局变量的作用域缩小到了单个文件, 生命周期是整个程序的周期;

关于函数头文件的引申

-- 内部函数 : 单个文件中使用的内部函数, 仅在那个特定文件中定义函数即可;

-- 全局函数 : 如果要在整个工程中使用一个全局函数, 需要将这个函数定义在一个头文件中;

static变量与普通变量区别

-- static全局变量 与 全局变量区别 : static 全局变量 只初始化一次, 防止在其它文件中使用;

-- static局部变量 与 局部变量区别 : static 局部变量 只初始化一次, 下一次依据上一次结果;

static函数与普通函数区别 : static 函数在内存中只保留一份, 普通函数 每调用一次, 就创建一个副本;

.

(6) 堆 和 栈比较

堆(heap)和栈(stack)区别

-- 申请方式 : stack 由系统自动分配, heap 由程序员进行分配;

-- 申请响应 : 如果 stack 没有足够的剩余空间, 就会溢出; 堆内存从链表中找空闲内存;

-- 内存限制 : stack 内存是连续的, 从高位向低位扩展, 而且很小, 只有几M, 是事先定好的, 在文件中配置; heap 是不连续的, 从低位向高位扩展, 系统是由链表控制空闲程序, 链表从低地址到高地址, 堆大小受虚拟内存限制, 一般32位机器有4G heap;

-- 申请效率 : stack 由系统分配, 效率高; heap 由程序员分配, 速度慢, 容易产生碎片;

(7) 各区分布情况

.

按照下图分布 : 由上到下顺序 : 栈区(stack) -> 堆区(heap) -> 全局区 -> 字符常量区 -> 代码区;

验证分区状况

-- 示例程序

代码语言:javascript
复制
/*************************************************************************
    > File Name: memory.c
    > Author: octopus
    > Mail: octopus_work.163.com 
    > Created Time: Mon 10 Mar 2014 08:34:12 PM CST
 ************************************************************************/

#include<stdio.h>
#include<stdlib.h>

int global1 = 0, global2 = 0, global3 = 0;

void function(void)
{
        int local4 = 0, local5 = 0, local6 = 0;
        static int static4 = 0, static5 = 0, static6 = 0;
        int *p2 = (int*)malloc(sizeof(int));

        printf("子函数 局部变量 : \n");
        printf("local4 : %p \n", &local4);
        printf("local5 : %p \n", &local5);
        printf("local6 : %p \n", &local6);

        printf("子函数 指针变量 : \n");
        printf("p2 : %p \n", p2);

        printf("全局变量 : \n");
        printf("global1 : %p \n", &global1);
        printf("global2 : %p \n", &global2);
        printf("global3 : %p \n", &global3);

        printf("子函数 静态变量 : \n");
        printf("static4 : %p \n", &static4);
        printf("static5 : %p \n", &static5);
        printf("static6 : %p \n", &static6);

        printf("子函数地址 : \n");
        printf("function : %p \n", function);
}

int main(int argc, char **argv)
{
        int local1 = 0, local2 = 0, local3 = 0;
        static int static1 = 0, static2 = 0, static3 = 0;
        int *p1 = (int*)malloc(sizeof(int));
        const int const1 = 0;
        char *char_p = "char";

        printf("主函数 局部变量 : \n");
        printf("local1 : %p \n", &local1);
        printf("local2 : %p \n", &local2);
        printf("local3 : %p \n", &local3);
        printf("const1 : %p \n", &const1);

        printf("主函数 指针变量 : \n");
        printf("p1 : %p \n", p1);

        printf("全局变量 : \n");
        printf("global1 : %p \n", &global1);
        printf("global2 : %p \n", &global2);
        printf("global3 : %p \n", &global3);

        printf("主函数 静态变量 : \n");
        printf("static1 : %p \n", &static1);
        printf("static2 : %p \n", &static2);
        printf("static3 : %p \n", &static3);

        printf("字符串常量 : \n");
        printf("char_p : %p \n", char_p);

        printf("主函数地址 : \n");
        printf("main : %p \n", main);


        printf("= = = = = = = = = = = = = = = \n");

        function();

        return 0;
}

-- 执行结果

代码语言:javascript
复制
[root@ip28 pointer]# gcc memory.c 
[root@ip28 pointer]# ./a.out 
主函数 局部变量 : 
local1 : 0x7fff75f5eedc 
local2 : 0x7fff75f5eed8 
local3 : 0x7fff75f5eed4 
const1 : 0x7fff75f5eed0 
主函数 指针变量 : 
p1 : 0x19bad010 
全局变量 : 
global1 : 0x600e14 
global2 : 0x600e18 
global3 : 0x600e1c 
主函数 静态变量 : 
static1 : 0x600e34 
static2 : 0x600e30 
static3 : 0x600e2c 
字符串常量 : 
char_p : 0x4009f7 
主函数地址 : 
main : 0x40065f 
= = = = = = = = = = = = = = = 
子函数 局部变量 : 
local4 : 0x7fff75f5eea4 
local5 : 0x7fff75f5eea0 
local6 : 0x7fff75f5ee9c 
子函数 指针变量 : 
p2 : 0x19bad030 
全局变量 : 
global1 : 0x600e14 
global2 : 0x600e18 
global3 : 0x600e1c 
子函数 静态变量 : 
static4 : 0x600e28 
static5 : 0x600e24 
static6 : 0x600e20 
子函数地址 : 
function : 0x400528 

3. 指针与地址

(1) & 与 * 操作

取地址运算符 & : p = &c;

-- 表达式解析 : 将 c 的地址赋值给 变量 p, p 是指向 c 变量的指针;

-- & 可以使用的情况 : 取地址操作 只能用于内存中的对象, 如变量 或 数组, 栈内存 堆内存 都可以;

-- & 不适用的情况 : 不能用于 表达式, 常量, register类型变量; 

间接引用运算符 : * ;

-- 声明指针 : int *p ; 该表达式的含义是 *p 的结果是 int 类型, 声明变量 a, int a, 声明指针 *p , int *p;

-- 获取指针指向的值 : int a = *p ;

(2) 指针定义解析

声明指针 和 函数 : int *p, max(int a, int b), 声明指针变量 语法 与声明 变量语法类似, 同理声明函数也一样;

-- 原理 : *p 和 max()返回值 类型都是 int 类型;

指针指向 : 每个指针都必须指向某种特定类型;

-- 例外 : void *p 可以指向任何类型, 但是 p 不能进行取值运算, *p 是错误的, 因为不知道 p 指向的数据类型;

(3) 指针运算及示例

指针相关运算 : int x = 0; int *p = &x; 那么*p 就可以代表x;

-- 算数运算 : x = x + 1; 等价于 *p = *p + 1 ; int y = x + 1; 等价于 int y = *p + 1;

-- 自增运算 : 前提 : ++, * 运算顺序是自右向左;  ++*p 和 (*p)++, p 指向的值自增1, 注意要加上括号, 否则会将地址自增;

-- 指针赋值 : int *p, *q; int a = 0; p = &a; q = p; 最终结果 p 和 q 都指向了 变量 a;

示例程序

代码语言:javascript
复制
/*************************************************************************
    > File Name: pointer_address.c
    > Author: octopus
    > Mail: octopus_work.163.com 
    > Created Time: Mon 10 Mar 2014 09:52:01 PM CST
 ************************************************************************/

#include<stdio.h>

int main(int argc, char ** argv)
{
        int *p, *q;
        int a = 10, b;

        //p指针指向a变量
        p = &a;

        //*p 可以代替 a 进行运算
        ++*p;

        b = *p + 5;

        //指针之间可以直接相互赋值
        q = p;

        //打印 p 和 q 指针指向的值
        printf("*p = %d \n", *p);
        printf("*q = %d \n", *q);


        return 0;
}

执行结果 :

代码语言:javascript
复制
[root@ip28 pointer]# gcc pointer_address.c 
[root@ip28 pointer]# ./a.out 
*p = 11 
*q = 11 

4. 函数参数的传值调用和传址调用

(1) 传值调用 和 传址调用

传值调用 : 以传值的方式将参数传递给函数, 不能直接修改主函数中变量的值, 仅仅是将副本传递给了函数;

传址调用 : 将 变量的指针 传递给函数, 当函数对指针进行操作的时候, 主函数中的值也进行了对应变化;

交换函数示例1 : 

代码语言:javascript
复制
/*************************************************************************
    > File Name: swap.c
    > Author: octopus
    > Mail: octopus_work.163.com 
    > Created Time: Mon 10 Mar 2014 11:07:18 PM CST
 ************************************************************************/

#include<stdio.h>

void swap_1(int a, int b)
{
        int temp;
        temp = a;
        a = b;
        b = temp;

        printf("swap_1 传值 函数 a = %d, b = %d \n", a, b);
}

void swap_2(int *a, int *b)
{
        int temp;
        temp = *a;
        *a = *b;
        *b = temp;

        printf("swap_2 传址 函数 a = %d, b = %d\n", *a, *b);
}

int main(int argc, char **argv)
{
        int a = 10, b = 5;

        printf("初始值 : a = %d, b = %d \n\n", a, b);

        swap_1(a, b);
        printf("执行 swap_1 函数, a = %d, b = %d \n\n", a, b);

        swap_2(&a, &b);
        printf("执行 swap_2 函数, a = %d, b = %d \n", a, b);


        return 0;
}

执行结果

代码语言:javascript
复制
[root@ip28 pointer]# gcc swap.c 
[root@ip28 pointer]# ./a.out 
初始值 : a = 10, b = 5 

swap_1 传值 函数 a = 5, b = 10 
执行 swap_1 函数, a = 10, b = 5 

swap_2 传址 函数 a = 5, b = 10
执行 swap_2 函数, a = 5, b = 10 

示例解析

-- 传值调用 : swap_1 是传值调用, 传入的是 main 函数中的 a b 两个变量的副本, 因此函数执行完毕后, 主函数中的值是不变的;

-- 传址调用 : swap_2 是传址调用, 传入的是 a , b 两个变量的地址 &a, &b, 当在swap_2 中进行修改的时候, 主函数中的 a,b变量也会发生改变;

(2) 高级示例

需求分析 : 调用getint()函数, 将输入的数字字符 转为一个整形数据;

getch 和 ungetch 函数

-- 使用场景 : 当进行输入的时候, 不能确定是否已经输入足够的字符, 需要读取下一个字符, 进行判断, 如果多读取了一个字符, 就需要将这个字符退回去;

-- 使用效果 : getch() 和 ungetch() 分别是预读下一个字符, 和 将预读的字符退回去, 这样对于其它代码而言, 没有任何影响;

注意的问题 : 出现问题, 暂时编译不通过, 找个C语言大神解决;

代码

代码语言:javascript
复制
/*************************************************************************
    > File Name: getint.c
    > Author: octopus
    > Mail: octopus_work.163.com 
    > Created Time: Mon 10 Mar 2014 11:40:19 PM CST
 ************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#define SIZE 5

int getint(int *p)
{
	//sign 是用来控制数字的正负
	int c, sign;

	//跳过空白字符, 如果是空白字符, 就会进行下一次循环, 直到不是空白字符为止

	while(isspace(c = getc(stdin)));

	//如果输入的字符不是数字, 就将预读的数据退回到标准输入流中
	if(!isdigit(c) && c != EOF && c != '+' && c != '-')
	{
		ungetc(c, stdin);
		return 0;
	}

	/*
	 * 如果预读的是减号, 那么sign 标识就是 -1, 
	 * 如果预读的是加号, 那么sign 标识就是 1;
	 */
	sign = (c == '-') ? -1 : 1;
	//如果 c 是 加号 或者 减号, 再预读一个字符&
	if(c == '+' || c == '-')
		c = getc(stdin);

	for(*p = 0; isdigit(c); c = getc(stdin))
		*p = 10 * *p + (c - '0');

	*p *= sign;

	if(c != EOF)
		ungetc(c, stdin);

	return c;
	
}

int main(int argc, char **argv)
{
	int n, array[SIZE], i; 
	for(n = 0; n < SIZE && getint(&array[n]) != EOF; n++);

	for(i = 0; i < SIZE; i++)
	{
		printf("array[%d] = %d \n", i, array[i]);
	}
	return 0;
}

执行结果

代码语言:javascript
复制
octopus@octopus-Vostro-270s:~/code/c/pointer$ ./a.out 
123
123 43
674 1
array[0] = 123 
array[1] = 123 
array[2] = 43 
array[3] = 674 
array[4] = 1 

5. 指针 和 数组

指针数组比较

-- 可互相替代 : 数组下标执行的操作都可以使用指针替代;

-- 效率比较 : 使用指针操作效率比数组要高;

指针 与 数组初始化

-- 声明数组 : int a[10]; 定义一个长度为10 的int数组;

-- 声明指针 : int *p; 定义一个指针, 该指针指向整型;

-- 相互赋值 : p = &a[0], 将数组第一个元素的地址赋值给指针变量;

-- 使用指针获取数组对象 : *p 等价于 a[0], *(p + 1) 等价于 a[1], *(p + i)等价于 a[i];

-- 注意地址的运算 : p + i , 在地址运算上, 每次增加 sizeof(int) * i 个字节;

将数组赋值给指针的途径

-- 将数组第一个元素地址赋值给指针变量 : p = &a[0];

-- 将数组地址赋值给指针变量 : p = a;

指针 和 数组 访问方式互换 : 前提 int *p, a[10]; p = a;

-- 数组计算方式 : 计算a[i]的时候, 先将数组转化为 *(a + i)指针, 然后计算该指针值;

-- 取值等价 : a[i] 等价于 *(p + i);

-- 地址等价 : &a[i] 与 a + i 是等价的;

-- 指针下标访问 : p[i] 等价于 *(p + i);

-- 结论 : 通过数组和下标 实现的操作 都可以使用 指针和偏移量进行等价替换;

指针 和 数组 的不同点

-- 指针是变量 : int *p, a[10]; p = a 和 p++ 没有错误;

-- 数组名不是变量 : int *p, a[10]; a = p 和 a++ 会报错;

数组参数

-- 形参指针 : 将数组传作为参数传递给函数的时候, 传递的是数组的首地址, 传递地址, 形参是指针;

数组参数示例

-- 函数参数是数组 : 函数传入一个字符串数组参数, 返回这个字符串长度;

代码语言:javascript
复制
/*************************************************************************
    > File Name: array_param.c
    > Author: octopus
    > Mail: octopus_work.163.com 
    > Created Time: Sat 15 Mar 2014 12:46:57 AM CST
 ************************************************************************/

#include<stdio.h>

//计算字符串长度
int strlen(char *s)
{
        int n;
        for(n = 0; *s != '\0'; s++)
                n++;
        return n;
}

int main(int argc, char** argv)
{
        printf("strlen(djdhaj) = %d \n", strlen("djdhaj"));
        printf("strlen(12) = %d \n", strlen("12"));
        printf("strlen(dfe) = %d \n", strlen("dfe"));
}

-- 执行结果 : warning: conflicting types for built-in function ‘strlen’, 原因是 C语言中已经有了 strlen 函数了, 如果改一个函数名, 就不会有这个警告了;

代码语言:javascript
复制
[root@ip28 pointer]# gcc array_param.c 
array_param.c:12: warning: conflicting types for built-in function ‘strlen’
[root@ip28 pointer]# ./a.out           
strlen(djdhaj) = 6 
strlen(12) = 2 
strlen(dfe) = 3 

数组和指针参数 : 将数组名传给参数, 函数根据情况判断是作为数组还是作为指针;

-- 实参 : 指针偏移量 和 数组下标 都可以作为 数组或指针函数形参, 如 数组情况fun(&array[2]) 或者 指针情况fun(p + 2);

-- 形参 : 函数的形参可以声明为 fun(int array[]), 或者 fun(int *array), 如果传入的是数组的第二个元素的地址, 可以使用array[-2]来获数组取第一个元素;

数组指针参数示例

代码语言:javascript
复制
/*************************************************************************
    > File Name: param_array_pointer.c
    > Author: octopus
    > Mail: octopus_work.163.com 
    > Created Time: Sat 15 Mar 2014 01:28:33 AM CST
 ************************************************************************/

#include<stdio.h>

//使用指针做形参 取指针的前两位 和 当前位
void fun_p(int *p)
{
        printf("*(p - 2) = %d \n", *(p - 2));
        printf("*p = %d \n", *p);
}

//使用数组做形参 取数组的 第-2个元素 和 第0个元素
void fun_a(int p[])
{
        printf("p[-2] = %d \n", p[-2]);
        printf("p[0] = %d \n", p[0]);
}

int main(int argc, char **argv)
{
        int array[] = {1,2,3,4,5};
        //向指针参数函数中传入指针
        printf("fun_p(array + 2) : \n");
        fun_p(array + 2);

        //向数组参数函数中传入数组元素地址
        printf("fun_a(&array[2]) : \n");
        fun_a(&array[2]);

        //向指针参数函数中传入数组元素地址
        printf("fun_p(&array[2]) : \n");
        fun_p(&array[2]);

        //向数组参数函数中传入指针
        printf("fun_a(array + 2) : \n");
        fun_a(array + 2);
        return 0;
}

执行效果

代码语言:javascript
复制
[root@ip28 pointer]# gcc param_array_pointer.c 
[root@ip28 pointer]# ./a.out 
fun_p(array + 2) : 
*(p - 2) = 1 
*p = 3 
fun_a(&array[2]) : 
p[-2] = 1 
p[0] = 3 
fun_p(&array[2]) : 
*(p - 2) = 1 
*p = 3 
fun_a(array + 2) : 
p[-2] = 1 
p[0] = 3 

.

作者 : 万境绝尘

转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/20472269

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2014-03-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. void 与 void* 
    • (1) void 简介
      • (2) void*简介
      • 2. C 语言 程序内存分配
        • (1) 内存分区状况
          • (2) 内存分配方式
            • (3) register变量
              • (4) extern 变量
                • (5) static变量 与 全局变量区别
                  • (6) 堆 和 栈比较
                    • (7) 各区分布情况
                    • 3. 指针与地址
                      • (1) & 与 * 操作
                        • (2) 指针定义解析
                          • (3) 指针运算及示例
                          • 4. 函数参数的传值调用和传址调用
                            • (1) 传值调用 和 传址调用
                              • (2) 高级示例
                              • 5. 指针 和 数组
                              领券
                              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档