前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【运筹学】整数规划 ( 整数规划问题解的特征 | 整数规划问题 与 松弛问题 示例 )

【运筹学】整数规划 ( 整数规划问题解的特征 | 整数规划问题 与 松弛问题 示例 )

作者头像
韩曙亮
发布2023-03-28 20:50:01
1.6K0
发布2023-03-28 20:50:01
举报
文章被收录于专栏:韩曙亮的移动开发专栏

文章目录

一、整数规划问题解的特征


整数规划问题解的特征 :

① 整数规划问题 与 松弛问题 可行解集合关系 : 整数规划问题 可行解集合 , 是该整数规划问题的 松弛问题 可行解集合 的子集 , 任意两个可行解的 凸组合 , 不一定满足整数约束条件 , 不一定是可行解 ;

② 整数规划问题 与 松弛问题 最优解关系 : 整数规划问题的可行解 一定是 其 松弛问题的可行解 , 松弛问题的可行解不一定是整数规划问题的可行解 , 整数规划问题的最优解 不会优于 松弛问题的最优解 ;

松弛问题 比 整数规划问题 条件少一些 , 整数规划问题比松弛问题变量限制多一条 " 约束变量必须都是整数 " ;

二、整数规划问题 与 松弛问题 示例


假设有如下整数规划问题 :

\begin{array}{lcl} \rm maxZ = x_1 + x_2 \\\\ \rm s.t\begin{cases} \rm 14 x_1 + 9x_2 \leq 51 \\\\ \rm -6 x_1 + 3x_2 \leq 1 \\\\ \rm x_1, x_2 \geq 0 \ 并且为整数 \end{cases}\end{array}

上述整数规划问题对应的松弛问题 : 松弛问题 比 整数规划问题 条件少一些 , 整数规划问题比松弛问题变量限制多一条 " 约束变量必须都是整数 " ;

\begin{array}{lcl} \rm maxZ = x_1 + x_2 \\\\ \rm s.t\begin{cases} \rm 14 x_1 + 9x_2 \leq 51 \\\\ \rm -6 x_1 + 3x_2 \leq 1 \\\\ \rm x_1, x_2 \geq 0 \end{cases}\end{array}

使用图解法 , 解上述 松弛问题 的最优解为

\begin{cases} \rm x_1 = \cfrac{3}{2} \\\\ \rm x_2 = \cfrac{10}{3} \end{cases}

此时目标函数值

\rm maxZ = x_1 + x_2 = \cfrac{29}{6}

简单的将其松弛问题最优解上下取整 , 得到的四个点 , 如上图的四个红色点 , 都不在可行域中 , 选择的整数解 , 必须在可行域中 ;

根据 整数规划问题的的松弛问题 的最优解 , 如何找其 整数规划问题 的整数最优解 , 是整数规划问题的核心问题 ;

穷举法 ( 有局限性 ) : 直接看上图中可行域内的整数点 , 然后再逐一代入目标函数 , 得到一个 整数规划问题 的最优解 , 但是这种方法无法推广应用 , 如果点的个数比较多 , 如几万个 , 变量的维数多 , 如

10

个约束变量 , 这种方法肯定不适用 ;

整数规划问题的求解方法有 : ① 分支定界法 , ② 割平面法 ;

推荐使用 分支定界法 ;

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-01-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章目录
  • 一、整数规划问题解的特征
  • 二、整数规划问题 与 松弛问题 示例
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档