对于一个有序数组,可以使用高效的二分查找法,其时间复杂度为 O(log n)
。
但是,即使是有序的链表,也只能使用低效的顺序查找,其时间复杂度为 O(n)
。
如何提高链表的查找效率呢?
我们可以对链表加一层索引。具体来说,可以每两个结点提取一个结点到上一级,我们把抽出来的那一级叫作索引或索引层。索引节点中通过一个 down 指针,指向下一级结点。通过这样的改造,就可以支持类似二分查找的算法。我们把改造之后的数据结构叫作跳表(Skip list)。
随着数据的不断增长,一级索引层也变得越来越长。此时,我们可以为一级索引再增加一层索引层:二级索引层。
随着数据的膨胀,当二级索引层也变得很长时,我们可以继续为其添加新的索引层。这种链表加多级索引的结构,就是跳表。
在一个具有多级索引的跳表中,第一级索引的结点个数大约就是 n/2
,第二级索引的结点个数大约就是 n/4
,第三级索引的结点个数大约就是 n/8
,依次类推,也就是说,第 k
级索引的结点个数是第 k-1
级索引的结点个数的 1/2
,那第 k 级索引结点的个数就是 n/(2k)
。所以跳表查询数据的时间复杂度就是 O(logn)
。
比起单纯的单链表,跳表需要存储多级索引,肯定要消耗更多的存储空间。
假设原始链表大小为 n,那第一级索引大约有 n/2 个结点,第二级索引大约有 n/4 个结点,以此类推,每上升一级就减少一半,直到剩下 2 个结点。如果我们把每层索引的结点数写出来,就是一个等比数列。
索引节点数 = n/2 + n/4 + n/8 … + 8 + 4 + 2 = n-2
所以,跳表的空间复杂度是 O(n)
。
跳表的存储空间其实还有压缩空间。比如,我们增加索引节点的范围,由『每两个节点抽一个上级索引节点』改为『每五个节点抽一个上级索引节点』,可以显著节省存储空间。
实际上,在软件开发中,我们不必太在意索引占用的额外空间。在讲数据结构和算法时,我们习惯性地把要处理的数据看成整数,但是在实际的软件开发中,原始链表中存储的有可能是很大的对象,而索引结点只需要存储关键值和几个指针,并不需要存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间就可以忽略了。
跳表是一种各方面性能都比较优秀的动态数据结构,可以支持快速的插入、删除、查找操作,写起来也不复杂,甚至可以替代红黑树(Red-black tree)。
跳表不仅支持查找操作,还支持动态的插入、删除操作,而且插入、删除操作的时间复杂度也是 O(logn)
。
O(log n)
,所以这里查找某个数据应该插入的位置,方法也是类似的,时间复杂度也是 O(log n)
。当我们不停地往跳表中插入数据时,如果我们不更新索引,就有可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。
如红黑树、AVL 树这样的平衡二叉树,是通过左右旋的方式保持左右子树的大小平衡,而跳表是通过随机函数来维护前面提到的 “平衡性”。
当我们往跳表中插入数据的时候,我们可以选择同时将这个数据插入到部分索引层中。如何选择加入哪些索引层呢?可以通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值 K,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。
跳表是一种动态数据结构,支持快速的插入、删除、查找操作,时间复杂度都是 O(logn)
。
跳表的空间复杂度是 O(n)
。不过,跳表的实现非常灵活,可以通过改变索引构建策略,有效平衡执行效率和内存消耗。虽然跳表的代码实现并不简单,但是作为一种动态数据结构,比起红黑树来说,实现要简单多了。所以很多时候,我们为了代码的简单、易读,比起红黑树,我们更倾向用跳表。
经典实现:Redis 的 Sorted Set、JDK 的 ConcurrentSkipListMap
和 ConcurrentSkipListSet
都是基于跳表实现。
为什么 Redis 要用跳表来实现有序集合,而不是红黑树?
Redis 中的有序集合支持的核心操作主要有下面这几个:
其中,插入、删除、查找以及迭代输出有序序列这几个操作,红黑树也可以完成,时间复杂度跟跳表是一样的。但是,按照区间来查找数据这个操作,红黑树的效率没有跳表高。