前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >你也可以动手参数有效微调:LoRA、Prefix Tuning、P-Tuning、Prompt Tuning

你也可以动手参数有效微调:LoRA、Prefix Tuning、P-Tuning、Prompt Tuning

作者头像
西西嘛呦
发布2023-04-27 14:26:04
2.1K0
发布2023-04-27 14:26:04
举报

Part1前言

随着大语言模型的流行,如何让大模型在消费级GPU上进行微调训练成为了热点。掌握参数有效微调成为每个自然语言处理工程师必不可少的技能,正好hugging face开源了一个PEFT库,让我们也能够自己动手去了解参数有效微调。接下来以中文情感分析(二分类)去了解下参数有效微调。

使用的方法来自这些论文:

  1. LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS
  2. Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
  3. P-Tuning: GPT Understands, Too
  4. Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning

Part2结果

接下来是一些的基础设置:

  • 数据:ChnSentiCorp_htl_all
  • 模型:hfl/chinese-roberta-wwm-ext
  • 显存:Tesla T4 15G
  • batch_size:64
  • epoch:3
  • max_length:86
  • lr:3e-4

以下是结果,各位自行分析吧:

全参数微调

prefix-tuning

prompt-tuning

p-tuning

LoRA

总参数

102269186

102637826

102284546

102498562

102564098

可训练参数

102269186

370178

16898

230914

296450

可训练参数占比(%)

100

0.3606

0.0165

0.2252

0.2890

占用GPU(15G)

5.5G

4.5G

5.0G

5.1G

4.8G

特有参数

/

num_virtual_tokens=20

num_virtual_tokens=20

num_virtual_tokens=20encoder_hidden_size=128

inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.1

训练速度

1.13it/s

1.55 it/s

1.35 it/s

1.28 it/s

1.53 it/s

验证速度

3.36it/s

3.26 it/s

2.70 it/s

2.72 it/s

3.11 it/s

训练时长(分钟)

4.6838

4.3513

4.1768

4.1798

3.6353

验证loss

12.2706

12.1903

13.1484

9.1823

6.3543

准确率

0.6941

0.7617

0.7044

0.8461

0.8976

备注

Part3代码

最后附上所有代码:

代码语言:javascript
复制
#!pip install peft==0.2.0
#!pip install transformers==4.28.1
#!pip install accelerate
#!pip install loralib
#!pip install evaluate
#!pip install tqdm
#!pip install datasets

import argparse
import os

import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
from peft import (
    get_peft_config,
    get_peft_model,
    get_peft_model_state_dict,
    set_peft_model_state_dict,
    PeftType,
    PrefixTuningConfig,
    PromptEncoderConfig,
    PromptTuningConfig,
    LoraConfig,
)

import evaluate
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from tqdm import tqdm

import peft
print(peft.__version__)

#!wget https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/ChnSentiCorp_htl_all/ChnSentiCorp_htl_all.csv

data_file = "./ChnSentiCorp_htl_all.csv" # 数据文件路径,数据需要提前下载
# 加载数据集
dataset = load_dataset("csv", data_files=data_file)
dataset = dataset.filter(lambda x: x["review"] is not None)
datasets = dataset["train"].train_test_split(0.2, seed=123)

model_name_or_path = "hfl/chinese-roberta-wwm-ext"

if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")):
    padding_side = "left"
else:
    padding_side = "right"

max_length = 86

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side)
if getattr(tokenizer, "pad_token_id") is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id

def process_function(examples):
  tokenized_examples = tokenizer(examples["review"], truncation=True, max_length=max_length)
  tokenized_examples["labels"] = examples["label"]
  return tokenized_examples

tokenized_datasets = datasets.map(process_function, batched=True, remove_columns=datasets["train"].column_names)
accuracy_metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
  predictions, labels = eval_pred
  predictions = predictions.argmax(axis=-1)
  return accuracy_metric.compute(predictions=predictions, references=labels)


def collate_fn(examples):
    return tokenizer.pad(examples, padding="longest", return_tensors="pt")


# Instantiate dataloaders.
batch_size = 64
train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size)
eval_dataloader = DataLoader(
    tokenized_datasets["test"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size
)

# 训练器配置
p_type = "lora"
if p_type == "prefix-tuning":
  peft_type = PeftType.PREFIX_TUNING
  peft_config = PrefixTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=20)
elif p_type == "prompt-tuning":
  peft_type = PeftType.PROMPT_TUNING
  peft_config = PromptTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=20)
elif p_type == "p-tuning":
  peft_type = PeftType.P_TUNING
  peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=20, encoder_hidden_size=128)
elif p_type == "lora":
  peft_type = PeftType.LORA
  peft_config = LoraConfig(task_type="SEQ_CLS", inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.1)
# print(peft_type)

model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, num_labels=2)
if p_type is not None:
  model = get_peft_model(model, peft_config)
  model.print_trainable_parameters()
else:
  def print_trainable_parameters(model):
        """
        Prints the number of trainable parameters in the model.
        """
        trainable_params = 0
        all_param = 0
        for _, param in model.named_parameters():
            num_params = param.numel()
            # if using DS Zero 3 and the weights are initialized empty
            if num_params == 0 and hasattr(param, "ds_numel"):
                num_params = param.ds_numel

            all_param += num_params
            if param.requires_grad:
                trainable_params += num_params
        print(
            f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
        )

  print_trainable_parameters(model)

lr = 3e-4
num_epochs = 3
optimizer = AdamW(params=model.parameters(), lr=lr)

# Instantiate scheduler
lr_scheduler = get_linear_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs),
    num_training_steps=(len(train_dataloader) * num_epochs),
)

device = "cuda"
model.to(device)
metric = evaluate.load("accuracy")
import time
start = time.time()
for epoch in range(num_epochs):
    model.train()
    for step, batch in enumerate(tqdm(train_dataloader)):
        batch.to(device)
        outputs = model(**batch)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()

    model.eval()
    total_loss = 0.
    for step, batch in enumerate(tqdm(eval_dataloader)):
        batch.to(device)
        with torch.no_grad():
            outputs = model(**batch)
            loss = outputs.loss
            total_loss += loss
        predictions = outputs.logits.argmax(dim=-1)
        predictions, references = predictions, batch["labels"]
        metric.add_batch(
            predictions=predictions,
            references=references,
        )

    eval_metric = metric.compute()
    print(f"epoch {epoch} loss {total_loss}:", eval_metric)
end = time.time()

print("耗时:{}分钟".format((end-start) / 60))

参考:

https://github.com/huggingface/peft/

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-04-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Part1前言
  • Part2结果
  • Part3代码
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档