前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Puppeteer+RabbitMQ:Node.js 批量加工pdf服务架构设计与落地

Puppeteer+RabbitMQ:Node.js 批量加工pdf服务架构设计与落地

作者头像
寒月十八
发布2023-04-27 20:41:41
6680
发布2023-04-27 20:41:41
举报

智慧作业最近上线「个性化手册」(简称个册)功能,一份完整的个性化手册分为三部分

  • 学情分析:根据学生阶段性的学习和考试情况进行学情分析、归纳、总结,汇总学情数据;
  • 精准推荐:推荐算法基于学情数据结合知识图谱进行精准练习题推荐;
  • 错题回顾:错题的阶段性回顾复习。 第一部分学情分析的PDF由Node.js加工,与Java后端通过消息队列RabbitMQ进行数据交互,本文简单记录一下Node.js批量加工PDF服务的架构模式,以及基于现阶段发现的问题,梳理未来的迭代规划和演进方向。

业务特征

个册三个部分的PDF数据来源不同,生产逻辑独立由不同的服务生产,最终将三份PDF合并为一份,还要支持班级所有学生批量生产和压缩打包,所以这个功能在技术角度最主要的特征就是环节多耗时长

  • 环节多意味着在各个服务之间存在较多的网络通信和数据交互,核心挑战在于如何设计低耦合、高可用的服务架构;
  • 耗时长一方面体现在多个环节的总耗时,另一方面体现在三个PDF生产服务各自的加工耗时。 基于以上业务特征,PDF加工服务架构设计的一个大方向就是将长耗时任务异步处理,各服务之间逻辑解耦,通过消息队列进行数据交互

技术选型

服务端生成PDF通常有两种方案:

  • 第一种是使用 pdfkit 之类的工具通过代码绘制,这种方案最大的问题是可渲染的内容类型有限,定制化不足;
  • 第二种是创建 headless browser用html渲染后截取pdf,这种方案的架构相对复杂,但是可以支持所有web端的内容类型。 个册第一部分学情分析的某一页长这个样子:

仅这一页就涵盖文本、表格、图表以及各种自定义图案,内容类型多样并且后续迭代可能增加更多定制化内容,第一种方案的局限性很难满足需求,所以最终选定 headless browser 方案。

具体到 headless browser 的技术选型就非常有限了,可选的无非就是 Selenium/PhantomJS 这类老招牌,或者 Puppeteer/Playwright 这类新玩家。

严格来说Selenium只是一种类似按键精灵的工具,可通过代码在浏览器中模拟人的操作,本身并不是浏览器,所以需要搭配第三方浏览器使用,比如PhantomJS。 Selenium/PhantomJS 的最大的优点就是生态健全,支持多种编程语言,有相对繁荣的技术社区;缺点就是稳定性和性能较差,Selenium的稳定性出了名的糟糕,PhantomJS五年前就停止维护了。这哥俩通常用在对稳定性要求不是很高的场景,比如爬虫。

与之形成鲜明对比的,Puppeteer/Playwright 最大的优点就是稳定性高,性能更优;缺点就是对编程语言的支持有限,生态和技术社区相对没那么健全。

个册的业务特征一是对稳定性和性能要求很高;二是不要求跨浏览器(Playwright支持浏览器类型更丰富)。最终综合考虑API易用性、稳定性、性能、社区、风险等因素,在 Puppeteer 和 Playwright 之间选择了 Puppeteer。既然选定了 Puppeteer,配套的自然就是 Node.js了。

Puppeteer 和 Playwright 的对比可以参考这篇文章:Playwright vs Puppeteer: Core Differences。 这个需求是我第一次使用Puppeteer,还没完全摸透,下文涉及到Puppeteer相关的方案如果有问题,欢迎讨论指点

实现方案

智慧教育的分层架构如下:

Node.js PDF服务是本次需求新增的,为了方便分离部署和优化,PDF服务单独建立一个服务,不涉及Node.js接入层的改动。下图是个册PDF加工的完整流程:

每个环节的具体流程不细讲,Node.js PDF加工服务的细节下文详解。与Node.js PDF服务相关最关键的是与Java后端的数据交互流程。Java后端与Node.js PDF服务通过 RabbitMQ 消息队列进行数据交互,建立两个队列

队列

生产者

消费者

说明

任务队列

Java后端

Node.js PDF服务

Java 向队列中发送个册渲染数据,Node.js 消费

回传队列

Node.js PDF服务

Java后端

Node.js 向队列中发送pdf加工结果数据,Java 消费

这部分没啥好讲的,Node.js与Java之间按照约定的数据规范组装数据即可,下面详细介绍一下Node.js加工pdf的具体逻辑。

这一版个册的第一部分学情分析控制在3页,早期规划的个册PDF大约25页左右,技术调研和架构设计都是基于这个预期进行的,所以现在这套模式多少有点杀鸡用牛刀的意思,不过前期打好基础给后续迭代留些空间也是好事。

单份PDF加工流程

为了更方便理解,在介绍pdf加工流程之前,有必要先简要一下Node.js PDF服务的架构,以及与PDF加工逻辑最相关的 worker角色。

Node.js PDF服务架构最核心的三个角色:

  • Scheduler:负责轮询调度,发起任务;
  • Executor:负责任务前置后置相关逻辑,包括worker pool管理、worker 调度、MQ任务队列消息拉取、MQ回传队列消息发送等;
  • Worker:负责实质执行任务,包括pdf渲染、生产、上传OSS; 三者的关系如下所示:

SchedulerExecutor的具体逻辑以及三个角色之间的调度逻辑下文再详解,PDF文件的实质生产逻辑都集中在 Worker中,流程如下:

图中「发送消息至MQ回传队列」实质是由 Executor执行,此处画出方便理解完整流程。

预启动

图中虚线部分的预启动是在启动 Node.js 服务之前执行的逻辑,预启动完成之后 Node.js 服务被拉起,所以预启动的耗时是一次性的。

预启动过程执行两个动作:

  • 读取磁盘中的html文件内容,写入内存,为后续环节「加载网页」提供数据;
  • 创建 Puppeteer browser 实例。

上图中只画出pdf加工逻辑相关的预启动工作,实际上预启动还包含一些其他逻辑,比如建立 MQ 连接信道。

冷启动(废弃)

虽然冷启动在后来开发过程中被废弃,但通过这个事情发现自己的不足,还是值得记录一下的。 最初之所以设想冷启动环节,是因为尝试用 worker 模拟多线程。每个worker会创建一个browser实例和多个page实例(目前是3个),如下所示:

这样做的目的是将每个worker的负载上限固定,便于服务器资源规模预估,避免服务器某个节点负载过高,进而也可以避免k8s集群pod的纵向伸缩。

k8s纵向伸缩的取舍见仁见智,我个人不太建议使用。 如果任务队列长时间为空会触发缓存清理逻辑,销毁browser和page实例以节省服务器资源,再次发起任务会触发冷****启动。冷启动执行两件事情:

  • 链接/创建browser实例
  • 创建page实例 另外增加一个标识位_mounted代表冷启动是否完成,代码如下:
代码语言:javascript
复制
public async run(){
  if(!this._mounted){
    // 触发冷启动
    this._mount();
  }
  // ...其他逻辑
}
private async _mount(){
    if(!this._browser?.isConnected()){
      // 链接browser
      this._browser = await puppeteer.connect({
        browserWSEndpoint: this._wsEndpoint
      });
    }
    // 创建page实例
    if(isEmpty(this._pages)){
      for(let i =0;i<this._opts.maxPageCount;i++){
        const ctx = await this._browser.newPage();
        this._pages.push({
          ctx,
          busy: false
        });
      }
    }

    this._mounted = true;
}

乍看起来似乎没啥问题,但实际跑一跑代码会发现,在任务调度密集的时候,run函数短时间内被调用多次(具体的调度策略下文讲解),worker会触发多次冷启动,虽然不影响业务逻辑,但会引起服务器资源暴涨,这是因为冷启动会创建新的browser和page实例,但是旧实例并没有被清理,仍然在执行任务。 冷启动被调用多次的根本原因是Node.js不是多线程,如下图所示,假设冷启动耗时20ms,在此期间再次调用run函数,标识位_mounted还未被设置为true,就会又触发一次冷启动。

有没有解法?

当然有。多线程编程解决竞态最常用的就是:加锁。既然想模拟多线程那就彻底一点,把锁逻辑也加上呗。

worker本身是有“锁”的,每个worker有3个page实例,只有当存在空闲实例(busy为false)时run函数才可以执行,但是这个锁机制并不能避免多次冷启动问题,因为冷启动完成之前page实例还未被创建。

可能会有人说,那就加个限制,page实例不存在时也不让run函数执行不就得了?这么做的话run函数永远都不会被执行啊大聪明。

既然worker已有的锁不行,那就再加个冷启动锁,冷启动之前锁定,冷启动之后解锁。这么做当然是可以的,但是会增加逻辑复杂度,worker有两种锁,对后期迭代维护无疑是埋雷。

其实之所以有冷启动无非就是为了省点内存,用时间换空间,一个browser实例+3个空白page实例总共100m左右的内存,这年头内存这么便宜,为了省这点空间把逻辑搞那么复杂完全得不偿失。什么叫过度设计,这就是过度设计。

所以后来索性把冷启动过程干掉了,browser和page实例的创建放在worker初始化逻辑里。

代码语言:javascript
复制
public async init() {
    /**
     * 尽量禁用掉不需要的功能,提高性能
     */
    this._browser = await puppeteer.launch({
      headless: true,
      args: [
        '--incognito',
        '--disable-gpu',
        '--disable-dev-shm-usage',
        '--disable-setuid-sandbox',
        '--no-first-run',
        '--no-sandbox',
        '--no-zygote',
        '--single-process'
      ]
    });

    this._wsEndpoint = this._browser.wsEndpoint();
    // _mount函数逻辑不改动,调用_mount函数放在初始化逻辑中
    await this._mount();
}

加载网页

网页通过page.setContent(html)函数加载本地html文件,与通过page.goto(url)加载远程URL相比,既节省了部署网页的服务器资源,同时速度也更快

时间消耗

执行时机

性能瓶颈

其他

远程URL

DNS耗时下载耗时解析html耗时

运行时

网络IO

异步下载html引用的静态资源会增加额外耗时

本地html

读磁盘耗时解析html耗时

预启动阶段

文件IO+常驻内存

  • DNS耗时
  • 下载耗时
  • 解析html耗时

运行时 网络IO 异步下载html引用的静态资源会增加额外耗时 本地html

  • 读磁盘耗时
  • 解析html耗时

预启动阶段 文件IO+常驻内存

上文提到过,本地html文件在预启动阶段提前从磁盘读取存放于内存,运行时无需实时读取。所以文件IO的耗时不算在pdf加工逻辑总耗时中,而加载远程URL只能在运行时执行,会增长pdf加工的总时长。

另外,加载的本地html文件中不能存在静态资源引用,比如js和css必须全部以行内

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-04-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 业务特征
  • 技术选型
  • 实现方案
    • 单份PDF加工流程
      • 预启动
      • 冷启动(废弃)
      • 加载网页
相关产品与服务
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档