前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于Titanic数据集的完整数据分析

基于Titanic数据集的完整数据分析

原创
作者头像
皮大大
发布2023-05-05 10:13:37
9170
发布2023-05-05 10:13:37
举报

大家好,我是Peter~

本文是一个极度适合入门数据分析的案例,采用的是经典数据集:泰坦尼克数据集(train部分),主要内容包含:

  1. 数据探索分析EDA
  2. 数据预处理和特征工程
  3. 建模与预测
  4. 超参数优化
  5. 集成学习思想
  6. 特征重要性排序

需要notebook源码和数据的请后台联系小编

<!--MORE-->

导入数据

In 1:

代码语言:txt
复制
import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('fivethirtyeight')
%matplotlib inline

from dataprep.datasets import load_dataset  # 内置数据集
from dataprep.eda import plot # 绘图
from dataprep.eda import plot_correlation # 相关性
from dataprep.eda import create_report  # 分析报告
from dataprep.eda import plot_missing  # 缺失值

import warnings
warnings.filterwarnings('ignore')

In 2:

代码语言:txt
复制
data = pd.read_csv("train.csv")
data.head()

Out2:

自动探索分析

基于dataprep的自动化数据探索分析,对数据有整体了解

In 3:

代码语言:txt
复制
data.shape  # 数据量

Out3:

代码语言:txt
复制
(891, 12)

In 4:

代码语言:txt
复制
data.isnull().sum()  # 缺失值情况

Out4:

代码语言:txt
复制
PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64

In 5:

代码语言:txt
复制
data.dtypes   # 字段类型

Out5:

代码语言:txt
复制
PassengerId      int64
Survived         int64
Pclass           int64
Name            object
Sex             object
Age            float64
SibSp            int64
Parch            int64
Ticket          object
Fare           float64
Cabin           object
Embarked        object
dtype: object

In 6:

代码语言:txt
复制
plot(data)
代码语言:python
复制
plot_correlation(data)
代码语言:python
复制
plot_missing(data)

特征探索

3类特征

  1. 分类特征
  2. 有序特征;比如身高的低中高(tall、medium、short)
  3. 连续型特征

目标变量Survived

In 9:

代码语言:txt
复制
# 到底有多少人生存?

f,ax=plt.subplots(1,2,figsize=(18,8))

#  图1
data['Survived'].value_counts().plot.pie(explode=[0,0.1]
                                         ,autopct='%1.1f%%'
                                         ,ax=ax[0],
                                         shadow=True
                                        )
ax[0].set_title('Survived')
ax[0].set_ylabel('')

# 图2
sns.countplot('Survived',data=data,ax=ax[1])
ax[1].set_title('Survived')
plt.show()

统计不同sex下的生存人数:

In 10:

代码语言:txt
复制
data.groupby(['Sex','Survived'])['Survived'].count()   # 不同性别下的生存人数

Out10:

代码语言:txt
复制
Sex     Survived
female  0            81
        1           233
male    0           468
        1           109
Name: Survived, dtype: int64

Survived vs Sex

In 11:

代码语言:txt
复制
f,ax=plt.subplots(1,2,figsize=(18,8))  # 1行2列   通过ax来指定

# 分组统计柱状图plot.bar
data[['Sex','Survived']].groupby(['Sex']).mean().plot.bar(ax=ax[0])
ax[0].set_title('Survived vs Sex')

# 数量统计柱状图countplot
sns.countplot('Sex',  # 待统计字段
              hue='Survived',  # 分类字段
              data=data,  # dataframe
              ax=ax[1]  # 指定是哪个子图
             )

ax[1].set_title('Sex: Survived vs Dead')

plt.show()

Pclass:Survived vs Dead

In 12:

代码语言:txt
复制
# pandas如何实现透视表统计

pd.crosstab(data.Pclass,data.Survived,margins=True)  

Out12:

Survived

0

1

All

Pclass

1

80

136

216

2

97

87

184

3

372

119

491

All

549

342

891

In 13:

代码语言:txt
复制
# 添加表格美化功能

pd.crosstab(data.Pclass,data.Survived,margins=True).style.background_gradient(cmap='RdYlGn_r')
代码语言:python
复制
f,ax=plt.subplots(1,2,figsize=(18,8))

# 图1 : value_counts().plot.bar实现
data['Pclass'].value_counts().plot.bar(color=['#AD7F32','#EFDF00','#D3D3D3'],ax=ax[0])
ax[0].set_title('Number Of Passengers By Pclass')
ax[0].set_ylabel('Count')

# 图2:sns.countplot实现
sns.countplot('Pclass',hue='Survived',data=data,ax=ax[1])
ax[1].set_title('Pclass:Survived vs Dead')
plt.show()

Survived based on Sex and Pclass

In 15:

代码语言:txt
复制
pd.crosstab([data.Sex, data.Survived], data.Pclass,margins=True)

Out15:

Pclass

1

2

3

All

Sex

Survived

female

0

3

6

72

81

1

91

70

72

233

male

0

77

91

300

468

1

45

17

47

109

All

216

184

491

891

In 16:

代码语言:python
复制
pd.crosstab([data.Sex,data.Survived],data.Pclass,margins=True).style.background_gradient(cmap='YlGn_r')
代码语言:python
复制
fig = plt.figure(figsize=(12,6))
sns.factorplot('Pclass','Survived',hue='Sex',data=data)

plt.show()

特征Age

属于连续型特征

In 18:

代码语言:txt
复制
data['Age'].max() # 最大值

Out18:

代码语言:txt
复制
80.0

In 19:

代码语言:txt
复制
data['Age'].min()  # 最小值

Out19:

代码语言:txt
复制
0.42

In 20:

代码语言:txt
复制
data['Age'].mean()  # 均值

Out20:

代码语言:txt
复制
29.69911764705882

In 21:

代码语言:txt
复制
f,ax=plt.subplots(1,2,figsize=(18,10))

# 小提琴图
sns.violinplot("Pclass","Age", 
               hue="Survived", 
               data=data,
               split=True,
               ax=ax[0])

ax[0].set_title('Survived Based on Pclass and Age')
ax[0].set_yticks(range(0,110,10))

# 小提琴图
sns.violinplot("Sex",
               "Age",
               hue="Survived",
               data=data,
               split=True,ax=ax[1])

ax[1].set_title('Survived Based on Sex and Age')
ax[1].set_yticks(range(0,110,10))

plt.show()

特征Name

In 22:

代码语言:txt
复制
data['Start']=0
for i in data:
    # 提取姓名的字母部分;[点.]之前的部分;比如Miss,Lady等
    data['Start']=data["Name"].str.extract('([A-Za-z]+)\.')   

In 23:

代码语言:txt
复制
data["Start"].value_counts()

Out23:

代码语言:txt
复制
Mr          517
Miss        182
Mrs         125
Master       40
Dr            7
Rev           6
Mlle          2
Major         2
Col           2
Countess      1
Capt          1
Ms            1
Sir           1
Lady          1
Mme           1
Don           1
Jonkheer      1
Name: Start, dtype: int64

In 24:

代码语言:txt
复制
pd.crosstab(data.Start,data.Sex)  

Out24:

Sex

female

male

Start

Capt

0

1

Col

0

2

Countess

1

0

Don

0

1

Dr

1

6

Jonkheer

0

1

Lady

1

0

Major

0

2

Master

0

40

Miss

182

0

Mlle

2

0

Mme

1

0

Mr

0

517

Mrs

125

0

Ms

1

0

Rev

0

6

Sir

0

1

In 25:

代码语言:txt
复制
pd.crosstab(data.Start,data.Sex).T    # 转置功能

Out25:

代码语言:python
复制
# 制作基于统计数量的透视表

pd.crosstab(data.Start,data.Sex).T.style.background_gradient(cmap='summer_r')

将统计产生的结果分为5大类:Master+Miss+Mr+Mrs+Other

In 27:

代码语言:txt
复制
data['Start'].replace(['Mlle','Mme','Ms','Dr','Major','Lady','Countess','Jonkheer',
                       'Col','Rev','Capt','Sir','Don'], # 原数据
                      ['Miss','Miss','Miss','Mr','Mr','Mrs','Mrs',
                       'Other','Other','Other','Mr','Mr','Mr'],  # 替代数据
                      inplace=True)

不同年龄段均值

In 28:

代码语言:txt
复制
data.groupby('Start')['Age'].mean() 

Out28:

代码语言:txt
复制
Start
Master     4.574167
Miss      21.860000
Mr        32.739609
Mrs       35.981818
Other     45.888889
Name: Age, dtype: float64

根据不同Start的均值来填充对应分组下的缺失值:

In 29:

代码语言:txt
复制
# 代码可复用

data.loc[(data.Age.isnull())&(data.Start=='Master'),'Age']=5  # 对满足两个条件下Age字段的缺失值填充
data.loc[(data.Age.isnull())&(data.Start=='Miss'),'Age']=22
data.loc[(data.Age.isnull())&(data.Start=='Mr'),'Age']=33
data.loc[(data.Age.isnull())&(data.Start=='Mrs'),'Age']=36
data.loc[(data.Age.isnull())&(data.Start=='Other'),'Age']=46

In 30:

代码语言:txt
复制
data.Age.isnull().any()  # 没有缺失值

Out30:

代码语言:txt
复制
False

不同年龄段的存活情况统计:

In 31:

代码语言:txt
复制
f,ax=plt.subplots(1,2,figsize=(20,10))

x=list(range(0,85,5))

# 图1-直方图
data[data['Survived']==0].Age.plot.hist(ax=ax[0],bins=20,edgecolor='black',color='red')
ax[0].set_title('Survived = 0')  # 标题
ax[0].set_xticks(x)  # x轴ticks

data[data['Survived']==1].Age.plot.hist(ax=ax[1],bins=20,edgecolor='black',color='blue')
ax[1].set_title('Survived = 1')
ax[1].set_xticks(x)

plt.show()
代码语言:python
复制
sns.factorplot('Pclass','Survived',col='Start',data=data)

plt.show()

特征Embarked

In 33:

代码语言:txt
复制
(pd.crosstab([data.Embarked,data.Pclass],
             [data.Sex,data.Survived],margins=True)
 .style
.background_gradient(cmap='summer_r'))
代码语言:python
复制
sns.factorplot('Embarked','Survived',data=data)
fig=plt.gcf()

fig.set_size_inches(8,5)
plt.show()
代码语言:python
复制
f,ax=plt.subplots(2,2,figsize=(20,15))

# 图1:不同Embarked等级下人数
sns.countplot('Embarked',data=data,ax=ax[0,0])
ax[0,0].set_title('No. Of Passengers Boarded')

# 图2:不同不同Embarked等级下人数和Sex下的人数
sns.countplot('Embarked',hue='Sex',data=data,ax=ax[0,1])
ax[0,1].set_title('Male-Female Split for Embarked')

# 图3:不同Embarked,是否存活Survived人数统计
sns.countplot('Embarked',hue='Survived',data=data,ax=ax[1,0])
ax[1,0].set_title('Embarked vs Survived')

# 图4:不同Embarked和Pclass人数统计
sns.countplot('Embarked',hue='Pclass',data=data,ax=ax[1,1])
ax[1,1].set_title('Embarked vs Pclass')

# 调整图形宽高
plt.subplots_adjust(wspace=0.25,hspace=0.5)
plt.show()
代码语言:python
复制
sns.factorplot('Pclass',
               'Survived',
                hue='Sex',
               col='Embarked',
               data=data
              )

plt.show()

Embarked字段填充众数S:

In 37:

代码语言:txt
复制
data['Embarked'].fillna('S',inplace=True)

In 38:

代码语言:txt
复制
data.Embarked.isnull().any()

Out38:

代码语言:txt
复制
False

字段SibSip

In 39:

代码语言:python
复制
pd.crosstab([data.SibSp],data.Survived).style.background_gradient(cmap='summer_r')
代码语言:python
复制
f,ax=plt.subplots(1,2,figsize=(20,8))

sns.barplot('SibSp', 'Survived', data=data, ax=ax[0])
ax[0].set_title('Survived Based on SibSp')

sns.factorplot('SibSp', 'Survived', data=data, ax=ax[1])
ax[1].set_title('Survived Based on SibSp')

# plt.close(2)

plt.show()
代码语言:PYTHON
复制
pd.crosstab(data.SibSp,data.Pclass).style.background_gradient(cmap='YlOrBr_r')

特征Parch

In 42:

代码语言:txt
复制
pd.crosstab(data.Parch,data.Pclass).style.background_gradient(cmap='summer_r')
代码语言:PYTHON
复制
f,ax=plt.subplots(1,2,figsize=(20,8))
sns.barplot('Parch','Survived',data=data,ax=ax[0])
ax[0].set_title('Parch vs Survived')

sns.factorplot('Parch','Survived',data=data,ax=ax[1])
ax[1].set_title('Parch vs Survived')

plt.show()

特征Fare

In 44:

代码语言:txt
复制
print('最高金额: ',data['Fare'].max())
print('最低金额: ',data['Fare'].min())
print('平均金额: ',data['Fare'].mean())
最高金额:  512.3292
最低金额:  0.0
平均金额:  32.2042079685746

In 45:

代码语言:txt
复制
f,ax=plt.subplots(1,3,figsize=(20,8))

# 绘制3个不同金额等级的图形

# 基于distplot密度直方图绘制
sns.distplot(data[data['Pclass']==1].Fare,ax=ax[0])  
ax[0].set_title('Fares in Pclass 1')

sns.distplot(data[data['Pclass']==2].Fare,ax=ax[1])
ax[1].set_title('Fares in Pclass 2')

sns.distplot(data[data['Pclass']==3].Fare,ax=ax[2])
ax[2].set_title('Fares in Pclass 3')

plt.show()

特征相关性corr

绘制特征相关性热力图

In 46:

代码语言:txt
复制
sns.heatmap(data.corr(),  # 相关系数矩阵
            annot=True,
            cmap='RdBu_r',
            linewidths=0.2
           )

fig=plt.gcf()
fig.set_size_inches(10,8)
plt.show()

特征处理及衍生

年龄分段Age_band

In 47:

代码语言:txt
复制
data['Age_band']=0  # 给定初始值

# 在不同的年龄区间内进行分段:5段
data.loc[data['Age']<=16,'Age_band']=0
data.loc[(data['Age']>16)&(data['Age']<=32),'Age_band']=1
data.loc[(data['Age']>32)&(data['Age']<=48),'Age_band']=2
data.loc[(data['Age']>48)&(data['Age']<=64),'Age_band']=3
data.loc[data['Age']>64,'Age_band']=4
data.head()

Out47:

代码语言:PYTHON
复制
sns.countplot(data['Age_band'])

plt.show()	

基于不同Age_band的生存情况:

In 49:

代码语言:txt
复制
sns.factorplot('Age_band','Survived',data=data,col='Pclass')

plt.show()

家庭总人数Family_Size + 是否单身Alone

In 50:

代码语言:txt
复制
data['Family_Size']=0  # 初始值
data['Family_Size']=data['Parch']+data['SibSp']  # 总人数
data['Alone']=0  # 初始值
data.loc[data.Family_Size==0,'Alone']=1  # 单身;仅自己一个人

In 51:

代码语言:txt
复制
# f,ax=plt.subplots(1,2,figsize=(18,6))↔

In 52:

代码语言:txt
复制
fig = plt.figure(figsize=(12,8))
sns.factorplot('Family_Size','Survived',data=data,ax=ax[0])
plt.title('Family_Size vs Survived')

plt.show()
<Figure size 864x576 with 0 Axes>
代码语言:PYTHON
复制
fig = plt.figure(figsize=(12,8))
sns.factorplot('Alone','Survived',data=data,ax=ax[0])
plt.title('Alone vs Survived')

plt.show()
代码语言:PYTHON
复制
# 是否单身对生存影响

sns.factorplot('Alone',
               'Survived',
               data=data,
               hue='Sex',
               col='Pclass')

plt.show()

票价Fare分箱

In 55:

代码语言:txt
复制
data['Fare_Range']=pd.qcut(data['Fare'],4)  # 直接分4段

In 56:

代码语言:txt
复制
data["Fare_Range"].value_counts()

Out56:

代码语言:txt
复制
(7.91, 14.454]     224
(-0.001, 7.91]     223
(14.454, 31.0]     222
(31.0, 512.329]    222
Name: Fare_Range, dtype: int64

In 57:

代码语言:txt
复制
sns.countplot(data['Fare_Range'])

plt.show()

不同票价下的人数很均衡

In 58:

代码语言:txt
复制
# 票价分类

data['Fare_cat']=0

data.loc[data['Fare']<=7.91,'Fare_cat']=0
data.loc[(data['Fare']>7.91)&(data['Fare']<=14.454),'Fare_cat']=1
data.loc[(data['Fare']>14.454)&(data['Fare']<=31),'Fare_cat']=2
data.loc[(data['Fare']>31)&(data['Fare']<=513),'Fare_cat']=3

data.head()

Out58:

代码语言:PYTHON
复制
# 不同票价类别 + 性别下的生存情况
sns.factorplot('Fare_cat','Survived',data=data,hue='Sex')

plt.show()

字符特征转数值

In 60:

代码语言:txt
复制
# 直接替换

data['Sex'].replace(['male','female'],[0,1],inplace=True)
data['Embarked'].replace(['S','C','Q'],[0,1,2],inplace=True)
data['Start'].replace(['Mr','Mrs','Miss','Master','Other'],[0,1,2,3,4],inplace=True)

删除无用特征

删除对建模无效或者冗余的特征:

  • Name
  • Age:Age_band替换
  • Ticket
  • Fare:Fare_cat替换
  • Cabin
  • Fare_Range:Fare_cat替换
  • PassengerId

In 61:

代码语言:txt
复制
data.drop(['Name','Age','Ticket','Fare','Cabin','Fare_Range','PassengerId'],axis=1,inplace=True)

特征相关性(新)

In 62:

代码语言:txt
复制
sns.heatmap(data.corr(),  # 相关系数矩阵
            annot=True,
            cmap='RdBu_r',
            linewidths=0.2
           )

fig=plt.gcf()
fig.set_size_inches(10,8)
plt.show()

建模

In 63:

查看建模所用数据的基本信息:

In 64:

代码语言:txt
复制
data.shape

Out64:

代码语言:txt
复制
(891, 11)

In 65:

代码语言:txt
复制
data.isnull().sum()

Out65:

代码语言:txt
复制
Survived       0
Pclass         0
Sex            0
SibSp          0
Parch          0
Embarked       0
Start          0
Age_band       0
Family_Size    0
Alone          0
Fare_cat       0
dtype: int64

In 66:

代码语言:txt
复制
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):
 #   Column       Non-Null Count  Dtype
---  ------       --------------  -----
 0   Survived     891 non-null    int64
 1   Pclass       891 non-null    int64
 2   Sex          891 non-null    int64
 3   SibSp        891 non-null    int64
 4   Parch        891 non-null    int64
 5   Embarked     891 non-null    int64
 6   Start        891 non-null    int64
 7   Age_band     891 non-null    int64
 8   Family_Size  891 non-null    int64
 9   Alone        891 non-null    int64
 10  Fare_cat     891 non-null    int64
dtypes: int64(11)
memory usage: 76.7 KB

导入建模包

In 67:

代码语言:txt
复制
from sklearn.linear_model import LogisticRegression 
from sklearn import svm 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.naive_bayes import GaussianNB 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.model_selection import train_test_split 
from sklearn import metrics 
from sklearn.metrics import confusion_matrix 

切分数据

In 68:

代码语言:txt
复制
train,test=train_test_split(data,
                            test_size=0.3,
                            random_state=0,
                            stratify=data['Survived']  # 保持切分时候类别均衡,和整体数据保持一致
                           )
train_X=train[train.columns[1:]]
train_Y=train[train.columns[:1]]

test_X=test[test.columns[1:]]
test_Y=test[test.columns[:1]]

X=data[data.columns[1:]]
Y=data['Survived']

Radial Support Vector Machines(rbf-SVM)

radial-SVM:基于径向基核函数的SVM

In 69:

代码语言:txt
复制
model=svm.SVC(kernel='rbf',C=1,gamma=0.1)
model.fit(train_X,train_Y)
prediction1=model.predict(test_X)

In 70:

代码语言:txt
复制
metrics.accuracy_score(prediction1,test_Y)  # 准确率

Out70:

代码语言:txt
复制
0.835820895522388

Linear Support Vector Machine(linear-SVM)

In 71:

代码语言:txt
复制
model=svm.SVC(kernel='linear',C=0.1,gamma=0.1)
model.fit(train_X,train_Y)
prediction2=model.predict(test_X)

In 72:

代码语言:txt
复制
metrics.accuracy_score(prediction2,test_Y)  # 准确率

Out72:

代码语言:txt
复制
0.8171641791044776

Logistic Regression

In 73:

代码语言:txt
复制
model = LogisticRegression()
model.fit(train_X,train_Y)
prediction3=model.predict(test_X)

In 74:

代码语言:txt
复制
metrics.accuracy_score(prediction3,test_Y)

Out74:

代码语言:txt
复制
0.8134328358208955

K-Nearest Neighbours(KNN)

In 75:

代码语言:txt
复制
model=KNeighborsClassifier() 
model.fit(train_X,train_Y)
prediction4=model.predict(test_X)

In 76:

代码语言:txt
复制
metrics.accuracy_score(prediction4,test_Y)

Out76:

代码语言:txt
复制
0.8134328358208955

查看不同邻居个数k下的准确率情况:

In 77:

代码语言:txt
复制
a_index = list(range(1,11))
a = pd.Series()

for i in a_index:  
    model=KNeighborsClassifier(n_neighbors=i) # i个邻居
    model.fit(train_X,train_Y)
    prediction=model.predict(test_X)
    # 在不同邻居个数下求解出对应的准确率,进行比较;观察哪个下最高
    a=a.append(pd.Series(metrics.accuracy_score(prediction,test_Y)))  
    
plt.plot(a_index, a)  # 绘图:
plt.xticks(a_index)

fig=plt.gcf()
fig.set_size_inches(12,6)
plt.show()

查看不同的准确率得分:

In 78:

代码语言:txt
复制
a.values

Out78:

代码语言:txt
复制
array([0.76119403, 0.76865672, 0.79477612, 0.80597015, 0.81343284,
       0.81343284, 0.82462687, 0.82089552, 0.8358209 , 0.84328358])

In 79:

代码语言:txt
复制
a.values.max()

Out79:

代码语言:txt
复制
0.8432835820895522

Gaussian Naive Bayes

In 80:

代码语言:txt
复制
model=GaussianNB()
model.fit(train_X,train_Y)
prediction5=model.predict(test_X)

In 81:

代码语言:txt
复制
metrics.accuracy_score(prediction5,test_Y)

Out81:

代码语言:txt
复制
0.8134328358208955

Decision Tree

In 82:

代码语言:txt
复制
model=DecisionTreeClassifier()
model.fit(train_X,train_Y)
prediction6=model.predict(test_X)

In 83:

代码语言:txt
复制
metrics.accuracy_score(prediction6,test_Y)

Out83:

代码语言:txt
复制
0.8022388059701493

Random Forests

In 84:

代码语言:txt
复制
model=RandomForestClassifier(n_estimators=100)
model.fit(train_X,train_Y)
prediction7=model.predict(test_X)

In 85:

代码语言:txt
复制
metrics.accuracy_score(prediction7,test_Y)

Out85:

代码语言:txt
复制
0.8208955223880597

交叉验证

实施交叉验证

In 86:

代码语言:txt
复制
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import cross_val_predict 
kfold = KFold(n_splits=10, random_state=22,  shuffle=True) 

In 87:

代码语言:txt
复制
# 记录交叉验证的均值、模型准确率、标准差
cv_mean=[]
accuracy=[]
std=[]

# 不同分类模型
classifiers=['Linear Svm',
             'Radial Svm',
             'Logistic Regression',
             'KNN',
             'Decision Tree',
             'Naive Bayes',
             'Random Forest']

models=[svm.SVC(kernel='linear'),
        svm.SVC(kernel='rbf'),
        LogisticRegression(),
        KNeighborsClassifier(n_neighbors=9),
        DecisionTreeClassifier(),
        GaussianNB(),
        RandomForestClassifier(n_estimators=100)
       ]

# 遍历每个模型得到均值、准确率、标准差等信息
for model in models:
    cv_result = cross_val_score(model,X,Y, cv = kfold,scoring = "accuracy")
    # 3个统计值
    cv_mean.append(cv_result.mean())
    std.append(cv_result.std())
    accuracy.append(cv_result)
    
new_models_df=pd.DataFrame({'CV Mean':cv_mean, 'Std':std},index=classifiers)       
new_models_df

Out87:

CV Mean

Std

Linear Svm

0.784607

0.057841

Radial Svm

0.828377

0.057096

Logistic Regression

0.799176

0.040154

KNN

0.812634

0.041063

Decision Tree

0.809226

0.044548

Naive Bayes

0.795843

0.054861

Random Forest

0.811486

0.041164

结果可视化

In 88:

代码语言:txt
复制
plt.subplots(figsize=(12,6))

box=pd.DataFrame(accuracy, # 准确率
                 index=[classifiers]  # 分类模型名
                )

box.T.boxplot()

plt.show()
代码语言:PYTHON
复制
new_models_df['CV Mean'].plot.barh(width=0.7)

plt.title('Average CV Mean Accuracy')

fig=plt.gcf()
fig.set_size_inches(8,6)
plt.show()

混淆矩阵

在实施交叉验证后的混淆矩阵,查看分类效果:

In 90:

代码语言:txt
复制
f,ax=plt.subplots(3,3,figsize=(12,10))

y_pred = cross_val_predict(svm.SVC(kernel='rbf'),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[0,0],annot=True,fmt='2.0f')
ax[0,0].set_title('Matrix for rbf-SVM')

y_pred = cross_val_predict(svm.SVC(kernel='linear'),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[0,1],annot=True,fmt='2.0f')
ax[0,1].set_title('Matrix for Linear-SVM')

y_pred = cross_val_predict(LogisticRegression(),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,1],annot=True,fmt='2.0f')
ax[0,2].set_title('Matrix for Logistic Regression')

y_pred = cross_val_predict(KNeighborsClassifier(n_neighbors=9),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[0,2],annot=True,fmt='2.0f')
ax[1,0].set_title('Matrix for KNN')

y_pred = cross_val_predict(GaussianNB(),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[2,0],annot=True,fmt='2.0f')
ax[1,1].set_title('Matrix for Naive Bayes')

y_pred = cross_val_predict(RandomForestClassifier(n_estimators=100),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,0],annot=True,fmt='2.0f')
ax[1,2].set_title('Matrix for Random-Forests')

y_pred = cross_val_predict(DecisionTreeClassifier(),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,2],annot=True,fmt='2.0f')
ax[2,0].set_title('Matrix for Decision Tree')

plt.subplots_adjust(hspace=0.2,wspace=0.2)
plt.show()

超参数优化

In 91:

代码语言:txt
复制
from sklearn.model_selection import GridSearchCV

SVM

In 92:

代码语言:txt
复制
# 待搜索的参数
C=[0.05,0.1,0.2,0.3,0.25,0.4,0.5,0.6,0.7,0.8,0.9,1]  
gamma=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
kernel=['rbf','linear']

# 参数组合的字典形式
hyper={'kernel':kernel,'C':C,'gamma':gamma}
# 网格搜索
gd=GridSearchCV(estimator=svm.SVC(), param_grid=hyper, verbose=True)

gd.fit(X,Y)
Fitting 5 folds for each of 240 candidates, totalling 1200 fits

Out92:

代码语言:txt
复制
GridSearchCV(estimator=SVC(),
             param_grid={'C': [0.05, 0.1, 0.2, 0.3, 0.25, 0.4, 0.5, 0.6, 0.7,
                               0.8, 0.9, 1],
                         'gamma': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
                                   1.0],
                         'kernel': ['rbf', 'linear']},
             verbose=True)

查看最佳得分和参数组合:

In 93:

代码语言:txt
复制
print(gd.best_score_)  # 最佳得分
print(gd.best_estimator_)  # 最佳参数组合
0.8282593685267716
SVC(C=0.4, gamma=0.3)

Random Forests

In 94:

代码语言:txt
复制
n_estimators=range(100,1000,100)
hyper={'n_estimators': n_estimators}

gd=GridSearchCV(estimator=RandomForestClassifier(random_state=0),
                param_grid=hyper,
                verbose=True
               )
gd.fit(X,Y)
Fitting 5 folds for each of 9 candidates, totalling 45 fits

Out94:

代码语言:txt
复制
GridSearchCV(estimator=RandomForestClassifier(random_state=0),
             param_grid={'n_estimators': range(100, 1000, 100)}, verbose=True)

In 95:

代码语言:txt
复制
print(gd.best_score_)
print(gd.best_estimator_)
0.819327098110602
RandomForestClassifier(n_estimators=300, random_state=0)

集成学习Ensembling

  • Voting Classifier
  • Bagging
  • Boosting

Voting Classifier

In 96:

代码语言:txt
复制
from sklearn.ensemble import VotingClassifier

In 97:

代码语言:txt
复制
ensemble_model = VotingClassifier(estimators=[
    ('KNN', KNeighborsClassifier(n_neighbors=10)),
    ('SVM-R', svm.SVC(probability=True,kernel='rbf',C=0.5,gamma=0.1)),
    ('RF', RandomForestClassifier(n_estimators=500,random_state=0)),
    ('LR', LogisticRegression(C=0.05)),
    ('DT', DecisionTreeClassifier(random_state=0)),
    ('NB', GaussianNB()),
    ('SVM-L', svm.SVC(kernel='linear',probability=True))], 
                                  voting='soft').fit(train_X,train_Y)

In 98:

代码语言:txt
复制
ensemble_model.score(test_X,test_Y)

Out98:

代码语言:txt
复制
0.8246268656716418

In 99:

代码语言:txt
复制
# 交叉验证

# 对整体数据的交叉验证X-Y
cross=cross_val_score(ensemble_model,X,Y, cv = 10, scoring = "accuracy")
cross.mean()

Out99:

代码语言:txt
复制
0.8226716604244695

Bagging

Bagged KNN

In 100:

代码语言:txt
复制
from sklearn.ensemble import BaggingClassifier

In 101:

代码语言:txt
复制
model_knn=BaggingClassifier(base_estimator=KNeighborsClassifier(n_neighbors=3),
                        random_state=0,
                        n_estimators=700
                       )

model_knn.fit(train_X,train_Y)
prediction=model_knn.predict(test_X)

In 102:

代码语言:txt
复制
metrics.accuracy_score(prediction,test_Y)  # 准确率

Out102:

代码语言:txt
复制
0.832089552238806

In 103:

代码语言:txt
复制
# 交叉验证

result = cross_val_score(model_knn, X, Y, cv=10, scoring='accuracy')
result.mean()

Out103:

代码语言:txt
复制
0.8137952559300874
Bagged DecisionTree

In 104:

代码语言:txt
复制
model_dt = BaggingClassifier(base_estimator=DecisionTreeClassifier(),
                          random_state=0,
                          n_estimators=100
                         )
model_dt.fit(train_X,train_Y)
prediction=model_dt.predict(test_X)

In 105:

代码语言:txt
复制
metrics.accuracy_score(prediction,test_Y)  # 准确率

Out105:

代码语言:txt
复制
0.8208955223880597

In 106:

代码语言:txt
复制
# 交叉验证

result = cross_val_score(model_dt, X, Y, cv=10, scoring='accuracy')
result.mean()

Out106:

代码语言:txt
复制
0.8171410736579275

Boosting

AdaBoost(Adaptive Boosting)

In 107:

代码语言:txt
复制
from sklearn.ensemble import AdaBoostClassifier

In 108:

代码语言:txt
复制
ada = AdaBoostClassifier(n_estimators=200, random_state=0, learning_rate=0.1)

result=cross_val_score(ada, X, Y, cv=10,scoring='accuracy')
result.mean()

Out108:

代码语言:txt
复制
0.8249188514357055
Stochastic Gradient Boosting

In 109:

代码语言:txt
复制
from sklearn.ensemble import GradientBoostingClassifier

In 110:

代码语言:txt
复制
grad = GradientBoostingClassifier(n_estimators=500, random_state=0, learning_rate=0.1)

result=cross_val_score(grad,X,Y,cv=10,scoring='accuracy')
result.mean()

Out110:

代码语言:txt
复制
0.8115230961298376
XGBoost

In 111:

代码语言:txt
复制
import xgboost as xg

xgboost=xg.XGBClassifier(n_estimators=900,learning_rate=0.1)

result=cross_val_score(xgboost,X,Y,cv=10,scoring='accuracy')

result.mean()

Out111:

代码语言:txt
复制
0.8160299625468165

通过3种模型的比较,我们发现AdaBoost的得分是最高的;下面进行超参数优化过程:

AdaBoost超参数优化

In 112:

代码语言:txt
复制
n_estimators = list(range(100,1100,100))
learn_rate = [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

hyper = {'n_estimators': n_estimators,
       'learning_rate': learn_rate}

gd = GridSearchCV(estimator=AdaBoostClassifier(), param_grid=hyper, verbose=True)
gd.fit(X,Y)
Fitting 5 folds for each of 110 candidates, totalling 550 fits

Out112:

代码语言:txt
复制
GridSearchCV(estimator=AdaBoostClassifier(),
             param_grid={'learning_rate': [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
                                           0.7, 0.8, 0.9, 1],
                         'n_estimators': [100, 200, 300, 400, 500, 600, 700,
                                          800, 900, 1000]},
             verbose=True)

In 113:

代码语言:txt
复制
# 最高得分 和 最佳组合

print(gd.best_score_)  
print(gd.best_estimator_)
0.8293892411022534
AdaBoostClassifier(learning_rate=0.1, n_estimators=100)

混淆矩阵(AdaBoost模型)

In 114:

代码语言:txt
复制
ada = AdaBoostClassifier(n_estimators=100,random_state=0,learning_rate=0.1)

result = cross_val_predict(ada,X,Y,cv=10)

sns.heatmap(confusion_matrix(Y, result), # 混淆矩阵数据
            cmap='winter',
            annot=True,
            fmt='2.0f'
           )
plt.show()

Feature Importance(4种树模型)

Feature Importance表示的特征重要性

In 115:

代码语言:PYTHON
复制
f,ax=plt.subplots(2,2,figsize=(15,12))

# 1、模型
rf=RandomForestClassifier(n_estimators=500,random_state=0)
# 2、训练
rf.fit(X,Y)
# 3、重要性排序
pd.Series(rf.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[0,0])
# 4、添加标题
ax[0,0].set_title('Feature Importance in Random Forests')

ada=AdaBoostClassifier(n_estimators=200,learning_rate=0.05,random_state=0)
ada.fit(X,Y)
pd.Series(ada.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[0,1],color='#9dff11')
ax[0,1].set_title('Feature Importance in AdaBoost')

gbc=GradientBoostingClassifier(n_estimators=500,learning_rate=0.1,random_state=0)
gbc.fit(X,Y)
pd.Series(gbc.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[1,0],cmap='RdYlGn_r')
ax[1,0].set_title('Feature Importance in Gradient Boosting')

xgbc=xg.XGBClassifier(n_estimators=900,learning_rate=0.1)
xgbc.fit(X,Y)
pd.Series(xgbc.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[1,1],color='#FD0F00')
ax[1,1].set_title('Feature Importance in XgBoost')

plt.show()

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 导入数据
  • 自动探索分析
  • 特征探索
    • 3类特征
      • 目标变量Survived
        • Survived vs Sex
          • Pclass:Survived vs Dead
            • Survived based on Sex and Pclass
              • 特征Age
                • 特征Name
                  • 不同年龄段均值
                    • 特征Embarked
                      • 字段SibSip
                        • 特征Parch
                          • 特征Fare
                          • 特征相关性corr
                          • 特征处理及衍生
                            • 年龄分段Age_band
                              • 家庭总人数Family_Size + 是否单身Alone
                                • 票价Fare分箱
                                  • 字符特征转数值
                                    • 删除无用特征
                                      • 特征相关性(新)
                                      • 建模
                                        • 导入建模包
                                          • 切分数据
                                            • Radial Support Vector Machines(rbf-SVM)
                                              • Linear Support Vector Machine(linear-SVM)
                                                • Logistic Regression
                                                  • K-Nearest Neighbours(KNN)
                                                    • Gaussian Naive Bayes
                                                      • Decision Tree
                                                        • Random Forests
                                                        • 交叉验证
                                                          • 实施交叉验证
                                                            • 结果可视化
                                                              • 混淆矩阵
                                                              • 超参数优化
                                                                • SVM
                                                                  • Random Forests
                                                                  • 集成学习Ensembling
                                                                    • Voting Classifier
                                                                      • Bagging
                                                                        • Bagged KNN
                                                                        • Bagged DecisionTree
                                                                      • Boosting
                                                                        • AdaBoost(Adaptive Boosting)
                                                                        • Stochastic Gradient Boosting
                                                                        • XGBoost
                                                                      • AdaBoost超参数优化
                                                                        • 混淆矩阵(AdaBoost模型)
                                                                        • Feature Importance(4种树模型)
                                                                        领券
                                                                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档