前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >mold源码阅读六 section size优化

mold源码阅读六 section size优化

作者头像
AkemiHomura
发布2023-05-10 08:51:32
5120
发布2023-05-10 08:51:32
举报
文章被收录于专栏:homura的博客homura的博客
pixiv:101015341 p2

上一期我们讲解了一些符号相关的处理,这一期我们来讲一些对于section size的优化处理。

mark_addrsig

代码语言:javascript
复制
// Read address-significant section information.
if (ctx.arg.icf && !ctx.arg.icf_all)
  mark_addrsig(ctx);

template <typename E>
void mark_addrsig(Context<E> &ctx) {
  Timer t(ctx, "mark_addrsig");

  tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
    file->mark_addrsig(ctx);
  });
}

相关的命令行参数

-icf=[all,safe,none] Fold identical code –no-icf

针对所有的obj处理,因为dso的地址相关信息是在运行时加载进行处理

代码语言:javascript
复制
template <typename E>
void ObjectFile<E>::mark_addrsig(Context<E> &ctx) {
  // Parse a .llvm_addrsig section.
  if (llvm_addrsig) {
    u8 *cur = (u8 *)llvm_addrsig->contents.data();
    u8 *end = cur + llvm_addrsig->contents.size();

    while (cur != end) {
      Symbol<E> &sym = *this->symbols[read_uleb(cur)];
      if (sym.file == this)
        if (InputSection<E> *isec = sym.get_input_section())
          isec->address_significant = true;
    }
  }

  // We treat a symbol's address as significant if
  //
  // 1. we have no address significance information for the symbol, or
  // 2. the symbol can be referenced from the outside in an address-
  //    significant manner.
  for (Symbol<E> *sym : this->symbols)
    if (sym->file == this)
      if (InputSection<E> *isec = sym->get_input_section())
        if (!llvm_addrsig || sym->is_exported)
          isec->address_significant = true;
}

关于llvm_addrsig,处理的是一个范围的Symbol,将这个范围的Symbol的address_significant设置为True

代码语言:javascript
复制
// in ObjectFile<E>::initialize_sections
std::unique_ptr<InputSection<E>> llvm_addrsig;
// Save .llvm_addrsig for --icf=safe.
if (shdr.sh_type == SHT_LLVM_ADDRSIG && !ctx.arg.relocatable) {
  llvm_addrsig = std::make_unique<InputSection<E>>(ctx, *this, name, i);
  continue;
}

普通的symbol address,针对非llvm_addrsig或者exported的symbol将address_significant为True

那么address_significant是什么呢

https://llvm.org/docs/Extensions.html#sht-llvm-addrsig-section-address-significance-table

the address of the symbol is used in a comparison or leaks outside the translation unit

简单来说就是这个地址会被用于比较或者用于翻译单元之外,这个变量的具体含义到后面使用的时候会结合场景进一步讲述。

gc_sections

代码语言:javascript
复制
// Garbage-collect unreachable sections.
if (ctx.arg.gc_sections)
  gc_sections(ctx);

template <typename E>
void gc_sections(Context<E> &ctx) {
  Timer t(ctx, "gc");

  mark_nonalloc_fragments(ctx);

  tbb::concurrent_vector<InputSection<E> *> rootset;
  collect_root_set(ctx, rootset);
  mark(ctx, rootset);
  sweep(ctx);
}

gc_sections主要是对section像GC一样进行mark and sweep,清理掉未被使用的段,关于gc_sections的选项

–gc-sections Remove unreferenced sections

mark_nonalloc_fragments

代码语言:javascript
复制
// Non-alloc section fragments are not subject of garbage collection.
// This function marks such fragments.
template <typename E>
static void mark_nonalloc_fragments(Context<E> &ctx) {
  Timer t(ctx, "mark_nonalloc_fragments");

  tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
    for (std::unique_ptr<MergeableSection<E>> &m : file->mergeable_sections)
      if (m)
        for (SectionFragment<E> *frag : m->fragments)
          if (!(frag->output_section.shdr.sh_flags & SHF_ALLOC))
            frag->is_alive.store(true, std::memory_order_relaxed);
  });
}

Non-alloc的fragment不是垃圾回收的对象,因此这里只是标记,避免后续被sweep

collect_root_set

代码语言:javascript
复制
template <typename E>
static void collect_root_set(Context<E> &ctx,
                             tbb::concurrent_vector<InputSection<E> *> &rootset) {
  Timer t(ctx, "collect_root_set");

  auto enqueue_section = [&](InputSection<E> *isec) {
    if (mark_section(isec))
      rootset.push_back(isec);
  };

  auto enqueue_symbol = [&](Symbol<E> *sym) {
    if (sym) {
      if (SectionFragment<E> *frag = sym->get_frag())
        frag->is_alive.store(true, std::memory_order_relaxed);
      else
        enqueue_section(sym->get_input_section());
    }
  };

  // Add sections that are not subject to garbage collection.
  tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
    for (std::unique_ptr<InputSection<E>> &isec : file->sections) {
      if (!isec || !isec->is_alive)
        continue;

      // -gc-sections discards only SHF_ALLOC sections. If you want to
      // reduce the amount of non-memory-mapped segments, you should
      // use `strip` command, compile without debug info or use
      // -strip-all linker option.
      u32 flags = isec->shdr().sh_flags;
      if (!(flags & SHF_ALLOC))
        isec->is_visited = true;

      if (should_keep(*isec))
        enqueue_section(isec.get());
    }
  });

  // Add sections containing exported symbols
  tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
    for (Symbol<E> *sym : file->symbols)
      if (sym->file == file && sym->is_exported)
        enqueue_symbol(sym);
  });

  // Add sections referenced by root symbols.
  enqueue_symbol(get_symbol(ctx, ctx.arg.entry));

  for (std::string_view name : ctx.arg.undefined)
    enqueue_symbol(get_symbol(ctx, name));

  for (std::string_view name : ctx.arg.require_defined)
    enqueue_symbol(get_symbol(ctx, name));

  // .eh_frame consists of variable-length records called CIE and FDE
  // records, and they are a unit of inclusion or exclusion.
  // We just keep all CIEs and everything that are referenced by them.
  tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
    for (CieRecord<E> &cie : file->cies)
      for (const ElfRel<E> &rel : cie.get_rels())
        enqueue_symbol(file->symbols[rel.r_sym]);
  });
}

这里主要是进行收集root,以便之后进行mark and sweep。

主要收集的方向有两个

  1. 对section直接添加,这里主要是针对一些不受垃圾回收影响的段。具体条件参考should_keep的实现。
  2. 针对符号进行处理,如果是在fragment中则会设置其为alive,因为fragment并非扫描的root。如果是在普通的段中则将符号引用的section添加到root中。 而符号的来源分为这么几种
    1. is_exported
    2. undefined
    3. require_defined
    4. cie中的rel符号
代码语言:javascript
复制
template <typename E>
static bool should_keep(const InputSection<E> &isec) {
  u32 type = isec.shdr().sh_type;
  u32 flags = isec.shdr().sh_flags;
  std::string_view name = isec.name();

  return (flags & SHF_GNU_RETAIN) ||
         type == SHT_NOTE ||
         type == SHT_INIT_ARRAY ||
         type == SHT_FINI_ARRAY ||
         type == SHT_PREINIT_ARRAY ||
         (std::is_same_v<E, ARM32> && type == SHT_ARM_EXIDX) ||
         name.starts_with(".ctors") ||
         name.starts_with(".dtors") ||
         name.starts_with(".init") ||
         name.starts_with(".fini") ||
         is_c_identifier(name);
}

mark

代码语言:javascript
复制
// Mark all reachable sections
template <typename E>
static void mark(Context<E> &ctx,
                 tbb::concurrent_vector<InputSection<E> *> &rootset) {
  Timer t(ctx, "mark");

  tbb::parallel_for_each(rootset, [&](InputSection<E> *isec,
                                    tbb::feeder<InputSection<E> *> &feeder) {
    visit(ctx, isec, feeder, 0);
  });
}
代码语言:javascript
复制
template <typename E>
static void visit(Context<E> &ctx, InputSection<E> *isec,
                  tbb::feeder<InputSection<E> *> &feeder, i64 depth) {
  assert(isec->is_visited);

  // If this is a text section, .eh_frame may contain records
  // describing how to handle exceptions for that function.
  // We want to keep associated .eh_frame records.
  for (FdeRecord<E> &fde : isec->get_fdes())
    for (const ElfRel<E> &rel : fde.get_rels(isec->file).subspan(1))
      if (Symbol<E> *sym = isec->file.symbols[rel.r_sym])
        if (mark_section(sym->get_input_section()))
          feeder.add(sym->get_input_section());

  for (const ElfRel<E> &rel : isec->get_rels(ctx)) {
    Symbol<E> &sym = *isec->file.symbols[rel.r_sym];

    // Symbol can refer either a section fragment or an input section.
    // Mark a fragment as alive.
    if (SectionFragment<E> *frag = sym.get_frag()) {
      frag->is_alive.store(true, std::memory_order_relaxed);
      continue;
    }

    if (!mark_section(sym.get_input_section()))
      continue;

    // Mark a section alive. For better performacne, we don't call
    // `feeder.add` too often.
    if (depth < 3)
      visit(ctx, sym.get_input_section(), feeder, depth + 1);
    else
      feeder.add(sym.get_input_section());
  }
}

从rootset出发

  1. 针对fde record中的rel符号所在的section进行标记,并且添加到feeder中(本质是加到了rootset中,后续会继续从这些节点开始遍历)
  2. 针对rel段中的符号进行遍历,如果是fragment则设置其alive,之后对sym的input section进行标记,标记成功的话则继续递归执行。

sweep

代码语言:javascript
复制
// Remove unreachable sections
template <typename E>
static void sweep(Context<E> &ctx) {
  Timer t(ctx, "sweep");
  static Counter counter("garbage_sections");

  tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
    for (std::unique_ptr<InputSection<E>> &isec : file->sections) {
      if (isec && isec->is_alive && !isec->is_visited) {
        if (ctx.arg.print_gc_sections)
          SyncOut(ctx) << "removing unused section " << *isec;
        isec->kill();
        counter++;
      }
    }
  });
}
代码语言:javascript
复制
template <typename E>
inline void InputSection<E>::kill() {
  if (is_alive.exchange(false))
    for (FdeRecord<E> &fde : get_fdes())
      fde.is_alive = false;
}

在ehframe那一期提到会清理未用到的record,而在这里实际执行了fde的清理工作。

icf_sections

这段内容比较长,建议单独查看源码对应位置进行对照,相关实现在elf/icf.cc中

icf的全拼推测是identical code folding

代码语言:javascript
复制
// Merge identical read-only sections.
if (ctx.arg.icf)
	icf_sections(ctx);
代码语言:javascript
复制
template <typename E>
void icf_sections(Context<E> &ctx) {
  Timer t(ctx, "icf");
  if (ctx.objs.empty())
    return;

  uniquify_cies(ctx);
  merge_leaf_nodes(ctx);
	...
}

uniquify_cies

代码语言:javascript
复制
template <typename E>
static void uniquify_cies(Context<E> &ctx) {
  Timer t(ctx, "uniquify_cies");
  std::vector<CieRecord<E> *> cies;

  for (ObjectFile<E> *file : ctx.objs) {
    for (CieRecord<E> &cie : file->cies) {
      for (i64 i = 0; i < cies.size(); i++) {
        if (cie.equals(*cies[i])) {
          cie.icf_idx = i;
          goto found;
        }
      }
      cie.icf_idx = cies.size();
      cies.push_back(&cie);
    found:;
    }
  }
}

针对所有obj中的所有cie,如果cie和cies中的任何一个相同,也就是出现了重复,则继续查看下一个cie是否重复,没有重复则将cie加进去。

这里我不太明白,为什么不保存一个CieRecord的Set,避免了再写一个循环的麻烦?如果有读者能解答我的疑惑欢迎邮件联系我。

merge_leaf_nodes

代码语言:javascript
复制
// Early merge of leaf nodes, which can be processed without constructing the
// entire graph. This reduces the vertex count and improves memory efficiency.
template <typename E>
static void merge_leaf_nodes(Context<E> &ctx) {
  Timer t(ctx, "merge_leaf_nodes");

  static Counter eligible("icf_eligibles");
  static Counter non_eligible("icf_non_eligibles");
  static Counter leaf("icf_leaf_nodes");

  tbb::concurrent_unordered_map<InputSection<E> *, InputSection<E> *,
                                LeafHasher<E>, LeafEq<E>> map;

  tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
    for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections) {
      if (!isec || !isec->is_alive)
        continue;

      if (!is_eligible(ctx, *isec)) {
        non_eligible++;
        continue;
      }

      if (is_leaf(ctx, *isec)) {
        leaf++;
        isec->icf_leaf = true;
        auto [it, inserted] = map.insert({isec.get(), isec.get()});
        if (!inserted && isec->get_priority() < it->second->get_priority())
          it->second = isec.get();
      } else {
        eligible++;
        isec->icf_eligible = true;
      }
    }
  });

  tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
    for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections) {
      if (isec && isec->is_alive && isec->icf_leaf) {
        auto it = map.find(isec.get());
        assert(it != map.end());
        isec->leader = it->second;
      }
    }
  });
}

针对所有obj中eligible的sections来处理。

是leaf则设置leaf并且插入到map中,但是如果insert失败,且priority更高,那么就更新对应的section

非leaf的情况下只设置eligible,留到后面进行处理。

之后针对所有obj的sections,如果是icf_leaf,那么更新其leader为map中对应的值

关于其中出现的InputSection的字段

代码语言:javascript
复制
// in InputSection

// For ICF
//
// `leader` is the section that this section has been merged with.
// Three kind of values are possible:
// - `leader == nullptr`: This section was not eligible for ICF.
// - `leader == this`: This section was retained.
// - `leader != this`: This section was merged with another identical section.
InputSection<E> *leader = nullptr;
u32 icf_idx = -1;
bool icf_eligible = false;
bool icf_leaf = false;

简单来说这个leader实际上是用于指向当前section的一个唯一实现。

如果leader存在且为自己,那么对应内容的段只访问过一次,如果不为自己的话,那么代表这不是第一次访问对应内容的段了。

用实际实现结合注释来说明leader这个字段。

  1. ==nullptr:这种情况表明这个section是not eligible的,也就是说会在上面的循环被忽略掉
  2. ==this:这种情况表明这个section是对应内容的段第一次出现,在后面更新leader的过程中是找到的section和自身相同。
  3. ≠this:这种情况表明后面更新leader的查找过程中,找到的section其实是其对应内容在前面第一次出现的段,也就是指向了对应的leader

举个例子,假设有s1, s2, s3三个section,s1是not eligible的,s2和s3是相同的,按照s1-s3的顺序进行扫描

s1 = nullptr

s2 = s2 # leader

s3 = s2

is_eligible

代码语言:javascript
复制
template <typename E>
static bool is_eligible(Context<E> &ctx, InputSection<E> &isec) {
  const ElfShdr<E> &shdr = isec.shdr();
  std::string_view name = isec.name();

  bool is_alloc = (shdr.sh_flags & SHF_ALLOC);
  bool is_exec = (shdr.sh_flags & SHF_EXECINSTR) ||
                 ctx.arg.ignore_data_address_equality;
  bool is_relro = (name == ".data.rel.ro" ||
                   name.starts_with(".data.rel.ro."));
  bool is_readonly = !(shdr.sh_flags & SHF_WRITE) || is_relro;
  bool is_bss = (shdr.sh_type == SHT_NOBITS);
  bool is_empty = (shdr.sh_size == 0);
  bool is_init = (shdr.sh_type == SHT_INIT_ARRAY || name == ".init");
  bool is_fini = (shdr.sh_type == SHT_FINI_ARRAY || name == ".fini");
  bool is_enumerable = is_c_identifier(name);
  bool is_addr_taken = !ctx.arg.icf_all && isec.address_significant;

  return is_alloc && is_exec && is_readonly && !is_bss && !is_empty &&
         !is_init && !is_fini && !is_enumerable && !is_addr_taken;
}

如果不满足这些情况的话无法被fold,具体条件以及判断方式无需再多讲解,纯粹是对应的规则。

注意这里出现了上面说的address_significant,需要为false才能满足,也就是说需要用地址比较的情况是无法被fold的。

gather_sections

代码语言:javascript
复制
// Prepare for the propagation rounds.
std::vector<InputSection<E> *> sections = gather_sections(ctx);
代码语言:javascript
复制
template <typename E>
static std::vector<InputSection<E> *> gather_sections(Context<E> &ctx) {
  Timer t(ctx, "gather_sections");

  // Count the number of input sections for each input file.
  std::vector<i64> num_sections(ctx.objs.size());

  tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
    for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections)
      if (isec && isec->is_alive && isec->icf_eligible)
        num_sections[i]++;
  });

  std::vector<i64> section_indices(ctx.objs.size());
  for (i64 i = 0; i < ctx.objs.size() - 1; i++)
    section_indices[i + 1] = section_indices[i] + num_sections[i];

  std::vector<InputSection<E> *> sections(
    section_indices.back() + num_sections.back());

  // Fill `sections` contents.
  tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
    i64 idx = section_indices[i];
    for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections)
      if (isec && isec->is_alive && isec->icf_eligible)
        sections[idx++] = isec.get();
  });

  tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
    sections[i]->icf_idx = i;
  });

  return sections;
}

这里出现了三个vector,先来理清对应的作用

  1. num_sections:每个obj中icf_eligible的input sections数量
  2. section_indices:由前一个section_indices和num_sections的值决定,其实是用于标记每个位置的objs的input section的起始在最终的sections中的坐标
  3. sections:初始化的容量是其实是section_indices[ctx.objs.size()]的值

这样说可能比较抽象,举个例子

num_sections: 2, 3, 4, 5

section_indices: 0, 2+0, 3+2+0, 4+3+2+0

5+4+3+2+0

算出来的其实是所有obj中icf_eligible的input sections的数量

之后是fill content的部分,并行的获取每个obj中的所有icf_eligible的input section的指针

Digest

接下来的部分都是在计算digest,具体算法有兴趣的可以去实现中自行查看细节。

什么是digest,这个链接中的一个回答说的比较明白了,我选取了关键内容放出来

https://crypto.stackexchange.com/questions/51243/what-is-the-difference-between-a-digest-and-a-hash-function

The digest is the output of the hash function. For example, sha256 has a digest of 256 bits, i.e. its digest has a length of 32 bytes.

代码语言:javascript
复制
typedef std::array<uint8_t, HASH_SIZE> Digest;
...
// We allocate 3 arrays to store hashes for each vertex.
//
// Index 0 and 1 are used for tree hashes from the previous
// iteration and the current iteration. They switch roles every
// iteration. See `slot` below.
//
// Index 2 stores the initial, single-vertex hash. This is combined
// with hashes from the connected vertices to form the tree hash
// described above.
std::vector<std::vector<Digest>> digests(3);
digests[0] = compute_digests<E>(ctx, sections);
digests[1].resize(digests[0].size());
digests[2] = digests[0];

std::vector<u32> edges;
std::vector<u32> edge_indices;
gather_edges<E>(ctx, sections, edges, edge_indices);

BitVector converged(digests[0].size());
bool slot = 0;
代码语言:javascript
复制
// Execute the propagation rounds until convergence is obtained.
{
  Timer t(ctx, "propagate");
  tbb::affinity_partitioner ap;

  // A cheap test that the graph hasn't converged yet.
  // The loop after this one uses a strict condition, but it's expensive
  // as it requires sorting the entire hash collection.
  //
  // For nodes that have a cycle in downstream (i.e. recursive
  // functions and functions that calls recursive functions) will always
  // change with the iterations. Nodes that doesn't (i.e. non-recursive
  // functions) will stop changing as soon as the propagation depth reaches
  // the call tree depth.
  // Here, we test whether we have reached sufficient depth for the latter,
  // which is a necessary (but not sufficient) condition for convergence.
  i64 num_changed = -1;
  for (;;) {
    i64 n = propagate<E>(digests, edges, edge_indices, slot, converged, ap);
    if (n == num_changed)
      break;
    num_changed = n;
  }
	// Run the pass until the unique number of hashes stop increasing, at which
  // point we have achieved convergence (proof omitted for brevity).
  i64 num_classes = -1;
  for (;;) {
    // count_num_classes requires sorting which is O(n log n), so do a little
    // more work beforehand to amortize that log factor.
    for (i64 i = 0; i < 10; i++)
      propagate<E>(digests, edges, edge_indices, slot, converged, ap);

    i64 n = count_num_classes<E>(digests[slot], ap);
    if (n == num_classes)
      break;
    num_classes = n;
  }
}

group sections

代码语言:javascript
复制
// Group sections by SHA digest.
{
  Timer t(ctx, "group");

  auto *map = new tbb::concurrent_unordered_map<Digest, InputSection<E> *>;
  std::span<Digest> digest = digests[slot];

  tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
    InputSection<E> *isec = sections[i];
    auto [it, inserted] = map->insert({digest[i], isec});
    if (!inserted && isec->get_priority() < it->second->get_priority())
      it->second = isec;
  });

  tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
    auto it = map->find(digest[i]);
    assert(it != map->end());
    sections[i]->leader = it->second;
  });

  // Since free'ing the map is slow, postpone it.
  ctx.on_exit.push_back([=] { delete map; });
}

if (ctx.arg.print_icf_sections)
  print_icf_sections(ctx);

这里我们暂时忽略digest是怎么来的细节,直接看这里使用的过程。将digest关联一个input section,这里的逻辑很像merge_leaf_nodes,只是key换成了Digest,本质更换了一种hash方式,另外不再是只针对leaf的了

sweep sections

代码语言:javascript
复制
// Eliminate duplicate sections.
// Symbols pointing to eliminated sections will be redirected on the fly when
// exporting to the symtab.
{
  Timer t(ctx, "sweep");
  static Counter eliminated("icf_eliminated");
  tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
    for (std::unique_ptr<InputSection<E>> &isec : file->sections) {
      if (isec && isec->is_alive && isec->is_killed_by_icf()) {
        isec->kill();
        eliminated++;
      }
    }
  });
}

template<typename E>
inline bool InputSection<E>::is_killed_by_icf() const {
  return this->leader && this->leader != this;
}

最后消除掉重复的section。判断重复的依据是leader不等于自身。

icf_sections 总结

  1. CieRecord去重
  2. merge leaf node
  3. 取出所有需要处理的section
  4. 计算digest
  5. 根据digest处理所有需要处理的section
  6. 消除重复的section
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-05-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • mark_addrsig
  • gc_sections
    • mark_nonalloc_fragments
      • collect_root_set
        • mark
          • sweep
          • icf_sections
            • uniquify_cies
              • merge_leaf_nodes
                • 关于其中出现的InputSection的字段
                • is_eligible
              • gather_sections
                • Digest
                  • group sections
                    • sweep sections
                      • icf_sections 总结
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档