前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【论文解读】​YOLOX: Exceeding YOLO Series in 2021

【论文解读】​YOLOX: Exceeding YOLO Series in 2021

作者头像
AiCharm
发布2023-05-15 15:44:11
1450
发布2023-05-15 15:44:11
举报
文章被收录于专栏:AiCharmAiCharm

导读

旷视团队对YOLO系列的再一次超越。

论文链接:后台发送“yolox”获取论文链接。

1. YOLOX

1.1 YOLOX-DarkNet53

YOLOv3 baseline 以Darknet53作为Baseline,给大家介绍如何一步一步过渡到现在的YOLOX-DarkNet53。YOLOv3是以Darknet53为主干,后面再加上SPP。我们对训练策略进行了一些修改,增加了EMA weights updating,余弦学习率,IoU损失,以及IoU-aware分支,在训练分类和objectness的分支中,我们使用了BCE loss。在数据增强方面,我们只使用了水平翻转,颜色抖动和多尺度。

Decoupled head 在目标检测中,分类和回归的任务是有相互冲突的,这是个普遍认可的问题。因此,一般会将分类和回归分开2个分支,但是在YOLO系列中,仍然是没有分开的。这里,我们将耦合的检测头分开,变为2个相互独立的检测分支。具体如下图:

Strong data augmentation 在数据增强中,我们使用了Mosaic和Mix up的增强策略,使用了这些增强策略之后,我发现预训练模型已经没有必要了,因此后面所有的训练都是从头训练的。

Anchor-free 将YOLO转换为anchor free其实很简单,我们将每个空间位置的输出由3减少到1,直接输出4个值,即左上角点的两个偏差值,以及宽和高。对于每个目标,其中心点位置所在的区域即为正样本,并预先定义一个尺度范围,将每个目标分配到不同的FPN层上。

Multi positives 上面提到的anchor free的正样本选择策略,对于每个目标只选择了1个正样本,这样会忽略掉其他的高质量的预测,使用这些高质量的预测对于梯度是有好处的,而且样本的不均衡性也会减少一些。这里,我们简单的使用了中心点3x3的区域,都作为正样本。

SimOTA 对于标签的分配,我们总结了4个关键点:1)损失/质量相关性 2)中心优先 3)每个GT的正样本anchor点的动态数量 4)全局视角。我们使用OTA作为候选的标签匹配策略。然后对OTA进行了修改,提出了SimOTA。首先,计算每个prediction-gt对的匹配度,用损失和质量来表示,这里,在SimOTA中,使用损失来表示:

其中,λ是平衡系数,然后,对于一个gt,用gi来表示,我们选择在一个固定的中心区域内,topk个具有最小的cost的预测来作为正样本,最后,这些正样本所在的grid也被分配为正样本,其他的grid是负样本,注意,对于不同的gt,k是不一样的。

End-to-end YOLO 我们增加了2个额外的卷积层,进行一对一的标签分配,不需要梯度。这使得检测器可以端到端的运行,这个略微降低了性能和速度。所以作为可选项。

具体的各种修改的效果如下:

1.2 其他的backbone

我们还测试了其他的主干。

Modified CSPNet in YOLOv5

Tiny and Nano detectors

Model size and data augmentation

2. 和其他的SOTA的对比

—END—

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2023-02-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AiCharm 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. YOLOX
    • 1.1 YOLOX-DarkNet53
      • 1.2 其他的backbone
      • 2. 和其他的SOTA的对比
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档