前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >循环码生成矩阵与监督 (校验) 矩阵

循环码生成矩阵与监督 (校验) 矩阵

作者头像
timerring
发布2023-06-20 15:07:56
3950
发布2023-06-20 15:07:56
举报
文章被收录于专栏:TechBlogTechBlog

循环码生成多项式与生成矩阵

非系统循环码的编码:

定理3: (n, k) 循环码的校验多项式为

\begin{array}{l} h(x)=\frac{x^{n}+1}{g(x)} \\ =h_{k} x^{k}+h_{k-1} x^{k-1}+\cdots+h_{1} x+h_{0} \end{array}

写出下面(7,3)循环码的生成多项式

g(x)=x^{4}+x^{3}+x^{2}+1 arrow 0011101

(1) 生成多项式、生成矩阵

循环码生成多项式的特点:

  • g(x) 的 0 次项是 1 ;
  • g(x) 唯一确定, 即它是码多项式中除 0 多项式以外次数最低的多项式;
  • 循环码每一码多项式都是 g(x) 的倍式, 且每一个小于等于 (n-1) 次的 g(x) 倍式一定是码多项式;
  • g(x) 的次数为 (n-k) ;
  • g(x) 是
x^{n}+1

的一个因子。

为了保证构成的生成矩阵 G 的各行线性不相关, 通常用生成多项式 g(x) 来构造生成矩阵; 若码多项式为降幂排列,

\begin{array}{l} g(x)=g_{n-k} x^{n-k}+g_{n-k-1} x^{n-k-1}+\cdots+g_{1} x+g_{0}, r=n-k \\ C(x)=\mathbf{u G}(x)=(u_{k-1} u_{k-2} \cdots u_{0}) \mathbf{G}(x) \\ =u_{k-1} x^{k-1} g(x)+u_{k-2} x^{k-2} g(x)+\cdots+u_{0} g(x) \\ G(x)=[\begin{array}{c} x^{k-1} g(x) \\ x^{k-2} g(x) \\ \vdots \\ g(x) \end{array}] rightarrow G=[\begin{array}{ccccccccc} g_{r} & g_{r-1} & \cdots & g_{1} & g_{0} & 0 & 0 & \cdots & 0 \\ 0 & g_{r} & g_{r-1} & \cdots & g_{1} & g_{0} & 0 & \cdots & 0 \\ & \vdots & & & & & \vdots & & \\ 0 & \cdots & 0 & 0 & g_{r} & g_{r-1} & \cdots & g_{1} & g_{0} \end{array}] \\ \end{array}

显然, 上式不符合

\mathbf{G}=(\mathbf{I}_{k}: \mathbf{Q})

形式, 所以此生成矩阵不是典型形式。

系统码生成矩阵的构造

系统码-信息位在码字高位, 因此编码时需要先将信息位置于码字高位, 即 u(x) \bullet x^{n-k} 。 码字低位为校验位,如何获得?

\begin{array}{c} c(x)_{\bmod g(x)}=0 \\ c(x)=u(x) \cdot x^{n-k}+r(x) \\ \mathbf{0}=\{[u(x) x^{n-k}]_{\bmod g(x)}+r(x)\} \end{array} \quad \stackrel{r(x)}{=}[u(x) x^{n-k}] \bmod g(x)

(2) 系统循环码

系统码的循环码生成矩阵

G(x)=[\begin{array}{c} x^{n-1}+(x^{n-1})_{\bmod g(x)} \\ x^{n-2}+(x^{n-2})_{\bmod g(x)} \\ \vdots \\ x^{n-i}+(x^{n-i})_{\bmod g(x)} \\ \vdots \\ g(x) \end{array}]=[\begin{array}{cccccccc} 1 & 0 & \cdots & 0 & r_{1,1} & r_{1,2} & \cdots & r_{1, n-k} \\ 0 & 1 & \cdots & 0 & r_{2,1} & r_{2,2} & \cdots & r_{2, n-k} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & r_{k, 1} & r_{k, 2} & \cdots & r_{k, n-k} \end{array}]

解:

\begin{array}{l} (x^{6}) \bmod g(x)=x^{2}+1 \\ (x^{5}) \bmod g(x)=x^{2}+x+1 \\ (x^{4}) \bmod g(x)=x^{2}+x \end{array} \quad arrow G=[\begin{array}{lllllll} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}]

循环码的监督 (校验) 矩阵

b. 利用循环码的特点来确定监督矩阵 H :

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-06-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 循环码生成多项式与生成矩阵
    • 系统码生成矩阵的构造
      • 系统码的循环码生成矩阵
      • 循环码的监督 (校验) 矩阵
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档