前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >280万条多模态指令-响应对,八种语言通用,首个涵盖视频内容的指令数据集MIMIC-IT来了

280万条多模态指令-响应对,八种语言通用,首个涵盖视频内容的指令数据集MIMIC-IT来了

作者头像
机器之心
发布2023-08-07 08:25:07
3820
发布2023-08-07 08:25:07
举报
文章被收录于专栏:机器之心

机器之心报道

编辑:蛋酱

在包含 280 万条多模态上下文指令 - 相应对的数据集上训练之后,Otter 展现出了优秀的问答能力,并在 ChatGPT 及人类的两项评估中获得了很高的评价。

近段时间来,AI 对话助手在语言任务上取得了不小的进展。这种显著的进步不只是基于 LLM 强大的泛化能力,还应该归功于指令调优。这涉及到在一系列通过多样化和高质量指令的任务上对 LLM 进行微调。

借助指令调优获得零样本性能的一个潜在原因是,它内化了上下文。这很重要,特别是当用户输入跳过常识性的上下文时。通过纳入指令调优,LLM 获得了对用户意图的高度理解,即使在以前未见过的任务中也能表现出更好的零样本能力。

然而,一个理想的 AI 对话助手应该能够解决涉及多种模态的任务。这需要获得一个多样化和高质量的多模式指令跟随数据集。比如,LLaVAInstruct-150K 数据集(也被称为 LLaVA)就是一个常用的视觉 - 语言指令跟随数据集,它是使用 COCO 图像、指令和从 GPT-4 中获得的基于图像说明和目标边界框的响应构建的。但 LLaVA-Instruct-150K 具有三个局限性:有限的视觉多样性;使用图片作为单一视觉数据;上下文信息仅包含语言形态。

为了推动 AI 对话助手突破这些限制,来自新加坡南洋理工大学、微软雷蒙德研究院的学者们提出了多模态上下文指令调优数据集 MIMIC-IT,这是一个包含 280 万条多模态上下文指令 - 相应对的数据集,涵盖各种现实生活场景。

论文地址:https://arxiv.org/pdf/2306.05425.pdf

此外,为了高效地生成指令 - 响应对,研究者还介绍了「Sythus」,这是一个受 self-instruct 方法启发的指令 - 响应注释的自动化 pipeline。Sythus 采用系统信息、视觉注释和上下文中的例子来指导语言模型(GPT-4 或 ChatGPT)根据视觉语境生成指令 - 响应对,针对视觉语言模型的三个基本能力:感知、推理和规划。此外,英文的指令和响应被译成七种语言,以支持多种语言的使用。

特别值得注意的是,研究者在 MIMIC-IT 上训练了基于 OpenFlamingo 的多模态模型「Otter」。通过 ChatGPT、人类两个方面的评估,Otter 的多模态能力超越了近期的其他视觉 - 语言模型。

在一系列 Demo 中,研究者展示了 Otter 的多模态问答能力:

Q:接下来出哪张牌?

A:八筒。这样你就能留着四条和五条,等着凑成顺子。

Q:我想着陆了,怎么操作?

A:按一次左下按钮,左转,要着陆时拉右边的手刹。

Q:接下来怎么办?

A:把球传到中路,跑到球门,寻找进球机会。

接下来,让我们看看研究细节。

MIMIC-IT 数据集

MIMIC-IT 数据集包括 280 万个多模态指令 - 响应对,涵盖了基本能力:感知、推理和计划。每个指令都伴随着多模态的对话背景,使在 MIMIC-IT 上训练的 VLM 能够在交互式指令中表现出很好的熟练度,并能进行零样本的概括。

相比于 LLaVA,MIMIC-IT 的特点包括:

(1) 多样化的视觉场景,包含了一般场景、自我中心视角场景和室内 RGB-D 图像等不同数据集的图像和视频;

(2) 多个图像(或一个视频)作为视觉数据;

(3) 多模态的上下文信息,包括多个指令 - 响应对和多个图像或视频;

(4) 支持八种语言,包括英文、中文、西班牙文、日语、法语、德语、韩语和阿拉伯语。

下图进一步展示了二者的指令 - 响应对对比(黄色方框为 LLaVA):

如表 1 所示,MIMIC-IT 的数据源来自七个数据集:COCO、Spot-the-diff (SD)、ScanNetV2 (SN)、VisualStorytelling (VIST) 、DenseCaption/Activity caption(DC)、TVCaption(TVC)和 Ego4D(E4D)。「上下文」这一列的「lang.」表示语言,「vis.」表示视觉。

Sythus:自动化指令 - 响应对生成 pipeline

同时,研究者提出了 Sythus(图 3),这是一个自动化 pipeline,用于生成多种语言的高质量指令 - 响应对。在 LLaVA 提出的框架基础上,研究者利用 ChatGPT 来生成基于视觉内容的指令 - 响应对。为了确保生成的指令 - 响应对的质量,该 pipeline 将系统信息、视觉注释和上下文中的样本作为 ChatGPT 的 prompt。系统信息定义了所生成的指令 - 响应对的预期语气和风格,而视觉注释则提供了基本的图像信息,如边界框和图像描述。上下文中的样本帮助 ChatGPT 在语境中学习。

由于核心集的质量会影响后续的数据收集过程,研究者采用了一个冷启动策略,在大规模查询之前加强上下文中的样本。在冷启动阶段,采用启发式方法,仅通过系统信息和视觉注释来 prompt ChatGPT 收集上下文中的样本。这个阶段只有在确定了令人满意的上下文中的样本后才结束。在第四步,一旦获得指令 - 响应对,pipeline 会将它们扩展为中文(zh)、日文(ja)、西班牙文(es)、德文(de)、法文(fr)、韩文(ko)和阿拉伯语(ar)。进一步的细节,可参考附录 C,具体的任务 prompt 可以在附录 D 中找到。

经验性评估

随后,研究者展示了 MIMIC-IT 数据集的各种应用以及在其上训练的视觉语言模型 (VLM) 的潜在能力。首先,研究者介绍了使用 MIMIC-IT 数据集开发的上下文指令调优模型 Otter。而后,研究者探索了在 MIMIC-IT 数据集上训练 Otter 的各种方法,并讨论了可以有效使用 Otter 的众多场景。

图 5 是 Otter 在不同场景下的响应实例。由于在 MIMIC-IT 数据集上进行了训练,Otter 能够为情境理解和推理、上下文样本学习、自我中心的视觉助手服务。

最后,研究者在一系列基准测试中对 Otter 与其他 VLM 的性能进行了比较分析。

ChatGPT 评估

下表 2 展示了研究者利用 MMAGIBench 框架 [43] 对视觉语言模型的感知和推理能力进行广泛的评估。

人类评估

Multi-Modality Arena [32] 使用 Elo 评级系统来评估 VLM 响应的有用性和一致性。图 6 (b) 显示 Otter 展示了卓越的实用性和一致性,在最近的 VLM 中获得了最高的 Elo 评级。

少样本上下文学习基准评估

Otter 基于 OpenFlamingo 进行微调,OpenFlamingo 是一种专为多模态上下文学习而设计的架构。使用 MIMIC-IT 数据集进行微调后,Otter 在 COCO 字幕 (CIDEr) [27] 少样本评估(见图 6 (c))上的表现明显优于 OpenFlamingo。正如预期的那样,微调还带来了零样本评估的边际性能增益。

图 6:ChatGPT 视频理解的评估。

讨论

缺陷。虽然研究者已经迭代改进了系统消息和指令 - 响应示例,但 ChatGPT 容易出现语言幻觉,因此它可能会生成错误的响应。通常,更可靠的语言模型需要 self-instruct 数据生成。

未来工作。未来,研究者计划支持更多具体地 AI 数据集,例如 LanguageTable 和 SayCan。研究者也考虑使用更值得信赖的语言模型或生成技术来改进指令集。

© THE END

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-06-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档