前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用Python构建大数据推荐系统:一个世界500强企业的成功案例

用Python构建大数据推荐系统:一个世界500强企业的成功案例

作者头像
博文视点Broadview
发布2023-08-09 08:43:47
2810
发布2023-08-09 08:43:47
举报
文章被收录于专栏:博文视点Broadview

推荐系统是大数据时代的利器,它能够为企业提升用户体验、增加用户粘性、促进销售转化、提高营销效率等。但是,搭建一个成功的推荐系统并不容易,它需要综合考虑多方面的因素,并根据业务场景、用户需求、数据变化等不断地进行迭代和优化。

本文将以一个世界500强的B2B2C企业为案例对象,深入探讨其在不同阶段搭建与演进大数据推荐系统所采用的技术方案与方法。本文将带领你从零开始一步步地完成推荐系统的各个阶段,从而完成推荐系统从起步到成熟的全生命周期。

阶段一:概念验证,快速实现最小可行性推荐

在此阶段,我们在网站上增加一个推荐栏位,为该企业提供一个简单有效的推荐方案,并观察了其对核心KPI(销售提升)的影响。我们使用Python和SKlearn等第三方库,基于协同过滤和关联算法实现推荐逻辑,并通过AB测试评估推荐效果。

在最开始做商业理解和项目计划时,我们会详细介绍流量数据埋点的规划、设计、代码部署、测试、校验等步骤,以及使用Python等库进行数据清洗、分析、可视化等操作;更重要的是如何定义商业目标以及与推荐系统的子目标协同。

我们使用Google Analytics 360进行数据埋点和分析,以及使用Python的Pandas、Numpy、Matplotlib等进行数据处理和可视化,例如使用SKlearn中的SVD、GBDT等算法实现协同过滤推荐,以及使用MLlib中的FPGrowth和Prefixspan算法实现关联规则推荐的方法。

阶段二:基础搭建,从0到打造完整可扩展的推荐架构

在此阶段,我们搭建一个完整可扩展的推荐系统架构,覆盖社区内容和商品推荐两个场景,并使用多种指标衡量推荐效果。

我们使用PySpark和HiveSQL等技术完成数据同步、清洗、计算等过程,并使用Learn2Rank等模式进行排序优化。我们使用AWS EMR、Redis、Java等技术搭建分布式计算和API服务集群,并使用NLP技术进行内容分析和标签提取,核心技术包括:

  • 使用PySpark和HiveSQL等技术来完成数据同步、清洗、计算等过程。
  • 使用PySpark中的ALS、FM等算法实现基于模型的协同过滤推荐。
  • 使用Redis作为缓存数据库缓存推荐结果。
  • 使用XGBoost等算法实现Learn2Rank模式下的排序优化。
  • 使用Jieba分词、TF-IDF、Word2Vec等技术进行内容分析和标签提取。

在整个过程中,我们为客户提供了端到端的推荐服务,即客户只需在网站端调用我们的推荐API接口即可实现推荐应用服务,其他所有过程全部由我们来实现。

阶段三:推荐强化,线上线下全推荐场景融合与联动

在这个阶段,我们增加搜索推荐、线上活动推荐、线下客户销售支持等多个推荐场景,并实现线上和线下数据和应用的联动。我们根据不同场景、目标、对象调整推荐策略,并考虑区域喜好、行业特点、跨区域销售政策等因素的方法。

我们使用ES作为搜索引擎,并结合PageRank、社交网络检测等技术实现多元数据关系的挖掘和处理。ES在此过程中主要承担了文本相似度计算,角色是文本存储和文本相似度召回;为同时相似度得分作为精排序的权重之一。在模型算法上,我们增加了更多基于社交关系、文本Embedding、基于多目标的回归与分类预测等方式,满足不同业务场景需求。

我们使用CRM数据、销售数据、营销活动数据等丰富用户画像和行为模式,并根据区域喜好、行业特点、跨区域销售政策等因素调整了推荐和精排序的策略;同时,利用CRM数据构建用户画像,并结合用户行为数据挖掘更多的用户行为模式。

阶段四:实时计算,全流程的推荐升级与实时改造

在此阶段,我们提升推荐系统的实时性,使得新注册用户、新产生内容、最新用户行为都能及时反馈到推荐结果中。我们增加了实时性、多样性、新鲜度等评估指标监控。

我们使用消息队列、API、PMML等方式实现离线和在线环境之间的数据和服务交换,并使用Spark Structured Streaming、Delta Lake等流处理框架和存储技术完成在线计算与实时数据存储。通过实时数据处理、特征提取与离线特征组合、推荐预测以及实时精排序、重排序(如热度降权)等过程支撑起全特征、全数据、全反馈、全模型的实时应用。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-06-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 博文视点Broadview 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档