前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ChatGPT能解决信息抽取吗?一份关于性能、评估标准、鲁棒性和错误的分析

ChatGPT能解决信息抽取吗?一份关于性能、评估标准、鲁棒性和错误的分析

作者头像
zenRRan
发布2023-08-22 14:14:35
4120
发布2023-08-22 14:14:35
举报

深度学习自然语言处理 原创 作者:qazw

信息抽取(IE)旨在从非结构化文本中抽取出结构化信息,该结果可以直接影响很多下游子任务,比如问答和知识图谱构建。因此,探索ChatGPT的信息抽取能力在一定程度上能反映出ChatGPT生成回复时对任务指令理解的性能

论文:Is Information Extraction Solved by ChatGPT? An Analysis of Performance, Evaluation Criteria, Robustness and Errors 地址:https://arxiv.org/pdf/2305.14450.pdf 代码:https://github.com/RidongHan/Evaluation-of-ChatGPT-on-Information-Extraction

本文将从性能、评估标准、鲁棒性和错误类型四个角度对ChatGPT在信息抽取任务上的能力进行评估。

实验

实验设置

任务和数据集 本文的实验采用4类常见的信息抽取任务,包括命名实体识别(NER),关系抽取(RE),事件抽取(EE)和基于方面的情感分析(ABSA),它们一共包含14类子任务。

对于NER任务,采用的数据集包括CoNLL03、FewNERD、ACE04、ACE05-Ent和GENIA。

对于RE任务,采用的数据集包括CCoNLL04、NYT-multi、TACRED和SemEval 2010。

对于EE任务,采用的数据集包括CACE05-Evt、ACE05+、CASIE和Commodity News EE。

对于ABSA任务,采用的数据集包括D17、D19、D20a和D20b,均从SemEval Challenges获取。

实验结果

1、性能

从上图结果可以明显看出: (1)ChatGPT和SOTA方法之间存在显著的性能差距; (2)任务的难度越大,性能差距越大; (3)任务场景越复杂,性能差距越大; (4)在一些简单的情况下,ChatGPT可以达到或超过SOTA方法的性能; (5)使用few-shot ICL提示通常有显著提升(约3.0~13.0的F1值),但仍明显落后于SOTA结果; (6)与few-shot ICL提示相比,few-shot COT提示的使用不能保证进一步的增益,有时它比few-shot ICR提示的性能更差。

2、对性能gap的思考

通过人工检查ChatGPT的回复,发现ChatGPT倾向于识别比标注的跨度更长的sapn,以更接近人类的偏好。因此,之前的硬匹配(hard-matching)策略可能不适合如ChatGPT的LLM,所以本文提出了一种软匹配(soft-matching)策略,算法流程如下。

该算法表明,只要生成和span和标记的span存在包含关系且达到相似度的阈值,则认为结果正确。通过软匹配策略,对重新评估ChatGPT的IE性能,得到的结果如下。

从上图可以看出,软匹配策略带来一致且显著的性能增益(F1值高达14.53),简单子任务的提升更明显。同时,虽然软匹配策略带来性能提升,但仍然没有达到SOTA水平。

3、鲁棒性分析 (1)无效输出

在大多数情况下,ChatGPT很少输出无效回复。然而在RE-Triplet子任务中,无效回复占比高达25.3%。一个原因可能这个子任务更加与众不同。

(2)无关上下文 由于ChatGPT对不同的提示非常敏感,本文研究了无关上下文对ChatGPT在所有IE子任务上性能的影响。主要通过在输入文本前后随机插入一段无关文本来修改zero-shot提示的“输入文本”部分,无关文本不包含要提取的目标信息span,结果如图所示。

可以看出,当随机添加无关上下文时,大多数子任务的性能都会显著下降(最高可达48.0%)。ABSA-ALSC和RE-RC子任务的性能下降较小,这是因为它们基于给定的方面项或实体对进行分类,受到无关上下文的影响较小。因此,ChatGPT对无关上下文非常敏感,这会显著降低IE任务的性能。

(3)目标类型的频率 真实世界的数据通常为长尾分布,导致模型在尾部类型上的表现比在头部类型上差得多。本文研究了“目标类型的频率”对ChatGPT在所有IE子任务中的性能的影响,结果如图所示。

可以看出,尾部类型的性能明显不如头部类型,仅高达头部类型的75.9%。在一些子任务上,比如RE-RC和RE-Triplet,尾部类型的性能甚至低于头部类型性能的15%,所以ChatGPT也面临长尾问题的困扰。

(4)其他 本文探讨了ChatGPT是否可以区分RE-RC子任务中两个实体的主客观顺序。由于大多数关系类型都是非对称的,因此两个实体的顺序非常关键。对于非对称关系类型的每个实例,交换实体的顺序并检测预测结果的变化,结果如图所示。

可以看到,交换顺序后大多数预测结果(超过70%)与交换前保持不变。因此对于RE-RC子任务,ChatGPT对实体的顺序不敏感,而且无法准确理解实体的主客体关系。

4、错误类型分析

从图中可以看出,“Unannotated spans”、“Incorrect types”和“Missing spans”是三种主要的错误类型,占70%以上。特别是,几乎三分之一的错误是“Unannotated spans”的错误,这也引发了对标注数据质量的担忧。

总结

本文从性能、评估标准、鲁棒性和错误类型四个角度评估了ChatGPT的信息抽取能力,结论如下:

性能 本文评估了ChatGPT在zero-shot、few-shot和chain-of-thought场景下的17个数据集和14个IE子任务上的性能,发现ChatGPT和SOTA结果之间存在巨大的性能差距。

评估标准 本文重新审视了性能差距,发现硬匹配策略不适合评估ChatGPT,因为ChatGPT会产生human-like的回复,并提出软匹配策略,以更准确地评估ChatGPT的性能。

鲁棒性 本文从四个角度分析了ChatGPT对14个子任务的鲁棒性,包括无效输出、无关上下文、目标类型的频率和错误类型并得出以下结论:1)ChatGPT很少输出无效响应;2)无关上下文和长尾目标类型极大地影响了ChatGPT的性能;3)ChatGPT不能很好地理解RE任务中的主客体关系。

错误类型 通过人工检查,本文分析了ChatGPT的错误,总结出7种类型,包括Missing spans、Unmentioned spans、Unannotated spans、Incorrect span offsets、Undefined types、Incorrect types和other。发现“Unannotated spans”是最主要的错误类型。这引发了大家对之前标注数据质量的担心,同时也表明利用ChatGPT标记数据的可能性。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2023-05-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 深度学习自然语言处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实验
    • 实验设置
      • 实验结果
      • 总结
      相关产品与服务
      NLP 服务
      NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档