前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Linux驱动开发新手必读 | 二、LED子系统——硬件驱动层

Linux驱动开发新手必读 | 二、LED子系统——硬件驱动层

作者头像
董哥聊技术
发布2023-08-29 16:32:02
5600
发布2023-08-29 16:32:02
举报
文章被收录于专栏:嵌入式艺术

二、LED子系统——硬件驱动层

上篇文章我们了解了子系统的框架,下面我们来分析驱动框架中每层的实现以及作用。

image-20230417084033734

LED子系统中,硬件驱动层相关文件在包括:kernel/drivers/leds/ 目录下,其主要的函数有:led-gpio.cled-xxx.c,其中led-gpio.c为通用的平台驱动程序,led-xxx.c为不同厂家提供的平台驱动程序。

我们在这里主要分析led-gpio.c

1、gpio_led_probe分析

打开该文件,直接找到加载驱动的入口函数gpio_led_probe

1.1 相关数据结构

1.1.1 gpio_led_platform_data
代码语言:javascript
复制
struct gpio_led_platform_data {
    int   num_leds;
    const struct gpio_led *leds;

#define GPIO_LED_NO_BLINK_LOW 0 /* No blink GPIO state low */
#define GPIO_LED_NO_BLINK_HIGH 1 /* No blink GPIO state high */
#define GPIO_LED_BLINK  2 /* Please, blink */
    gpio_blink_set_t gpio_blink_set;
};

结构体名称gpio_led_platform_data

文件位置include/linux/leds.h

主要作用LED的平台数据,用于对LED硬件设备的统一管理

这个结构体用于父节点向子节点传递的数据时使用

1.1.2 gpio_leds_priv
代码语言:javascript
复制
struct gpio_leds_priv {
    int num_leds;
    struct gpio_led_data leds[];
};

结构体名称gpio_leds_priv

文件位置drivers/leds/leds-gpio.c

主要作用LED驱动的私有数据类型,管理全部的LED设备。

这里的num_leds通过解析设备树的子节点的个数来获取 leds[]根据获取的num_leds个数,分配对应的空间,来初始化相关数据

1.2 实现流程

代码语言:javascript
复制
static int gpio_led_probe(struct platform_device *pdev)
{
    struct gpio_led_platform_data *pdata = dev_get_platdata(&pdev->dev);  // 检索设备的平台数据
    struct gpio_leds_priv *priv;
    int i, ret = 0;

    if (pdata && pdata->num_leds) {            // 判断平台数据LED数量
        priv = devm_kzalloc(&pdev->dev,
                sizeof_gpio_leds_priv(pdata->num_leds),
                    GFP_KERNEL);
        if (!priv)
            return -ENOMEM;

        priv->num_leds = pdata->num_leds;
        for (i = 0; i < priv->num_leds; i++) {
            ret = create_gpio_led(&pdata->leds[i], &priv->leds[i],
                          &pdev->dev, NULL,
                          pdata->gpio_blink_set);
            if (ret < 0)
                return ret;
        }
    } else {
        priv = gpio_leds_create(pdev);           // 创建LED设备 
        if (IS_ERR(priv))
            return PTR_ERR(priv);
    }

    platform_set_drvdata(pdev, priv);

    return 0;
}

函数介绍gpio_led_probeLED驱动的入口函数,也是LED子系统中,硬件设备和驱动程序匹配后,第一个执行的函数。

实现思路

  1. 通过dev_get_platdata检索设备的平台数据,如果平台数据中的LED数量大于零,则使用devm_kzalloc为其分配内存空间,并且使用create_gpio_led进行初始化
  2. 如果平台数据不存在或LED的数量为零,则使用gpio_leds_create创建LED。
  3. 最后,设置驱动程序数据,并返回0,表示操作成功。

数据结构:该函数主要包括了两个数据结构gpio_led_platform_datagpio_leds_priv

2、gpio_leds_create分析

2.1 相关数据结构

2.1.1 gpio_led
代码语言:javascript
复制
/* For the leds-gpio driver */
struct gpio_led {
    const char *name;     // LED名称
    const char *default_trigger;  // 默认触发类型 
    unsigned  gpio;     // GPIO编号
    unsigned active_low : 1;   // 低电平有效
    unsigned retain_state_suspended : 1;
    unsigned panic_indicator : 1;
    unsigned default_state : 2;  // 默认状态
    unsigned retain_state_shutdown : 1;
    /* default_state should be one of LEDS_GPIO_DEFSTATE_(ON|OFF|KEEP) */
    struct gpio_desc *gpiod;   // GPIO Group
};

结构体名称gpio_led

文件位置include/linux/leds.h

主要作用LED的硬件描述结构,包括名称,GPIO编号,有效电平等等信息。

该结构体的信息大多由解析设备树获得,将设备树中label解析为namegpios解析为gpiodlinux,default-trigger解析为default_trigger

2.1.2 gpio_led_data
代码语言:javascript
复制
struct gpio_led_data {
    struct led_classdev cdev;  // LED Class
    struct gpio_desc *gpiod;  // GPIO description
    u8 can_sleep;     
    u8 blinking;     // 闪烁
    gpio_blink_set_t platform_gpio_blink_set; // 闪烁设置
};

结构体名称gpio_led_data

文件位置drivers/leds/leds-gpio.c

主要作用LED相关数据信息,主要在于led_classdev,用于注册设备节点信息

由设备树解析出来的gpio_led,然后将部分属性赋值到gpio_led_data中,并且初始化led_classdev相关属性,并且实现led_classdev结构体中的部分函数。

2.2 实现流程

代码语言:javascript
复制
static struct gpio_leds_priv *gpio_leds_create(struct platform_device *pdev)
{
    struct device *dev = &pdev->dev;
    struct fwnode_handle *child;
    struct gpio_leds_priv *priv;
    int count, ret;

    count = device_get_child_node_count(dev);  // 获取子节点数量
    if (!count)
        return ERR_PTR(-ENODEV);

    priv = devm_kzalloc(dev, sizeof_gpio_leds_priv(count), GFP_KERNEL);
    if (!priv)
        return ERR_PTR(-ENOMEM);

    device_for_each_child_node(dev, child) {
        struct gpio_led_data *led_dat = &priv->leds[priv->num_leds]; // 与gpio_leds_priv结构体关联
        struct gpio_led led = {};
        const char *state = NULL;
        struct device_node *np = to_of_node(child);

        ret = fwnode_property_read_string(child, "label", &led.name); // 读设备树属性,赋值gpio_led结构体
        if (ret && IS_ENABLED(CONFIG_OF) && np)
            led.name = np->name;
        if (!led.name) {
            fwnode_handle_put(child);
            return ERR_PTR(-EINVAL);
        }

        led.gpiod = devm_fwnode_get_gpiod_from_child(dev, NULL, child,
                                 GPIOD_ASIS,
                                 led.name);
        if (IS_ERR(led.gpiod)) {
            fwnode_handle_put(child);
            return ERR_CAST(led.gpiod);
        }

        fwnode_property_read_string(child, "linux,default-trigger",
                        &led.default_trigger);

        if (!fwnode_property_read_string(child, "default-state",
                         &state)) {
            if (!strcmp(state, "keep"))
                led.default_state = LEDS_GPIO_DEFSTATE_KEEP;
            else if (!strcmp(state, "on"))
                led.default_state = LEDS_GPIO_DEFSTATE_ON;
            else
                led.default_state = LEDS_GPIO_DEFSTATE_OFF;
        }

        if (fwnode_property_present(child, "retain-state-suspended"))
            led.retain_state_suspended = 1;
        if (fwnode_property_present(child, "retain-state-shutdown"))
            led.retain_state_shutdown = 1;
        if (fwnode_property_present(child, "panic-indicator"))
            led.panic_indicator = 1;

        ret = create_gpio_led(&led, led_dat, dev, np, NULL); // 将gpio_led结构体、gpio_led_data关联起来
        if (ret < 0) {
            fwnode_handle_put(child);
            return ERR_PTR(ret);
        }
        led_dat->cdev.dev->of_node = np;
        priv->num_leds++;
    }

    return priv;
}

函数介绍gpio_leds_create主要用于创建LED设备。

实现思路

  1. 通过device_get_child_node_count获取设备树中LED子节点的数量,根据获取到的子节点数量,分配LED设备对应的内存空间
  2. 通过device_for_each_child_node遍历每个子节点,并为每个子节点创建对应的LED设备
  3. 对于每个子节点,使用fwnode_property_read_string接口,读取设备树中相关的属性信息,如:labellinux,default-trigger等,将这些信息赋值给gpio_led结构体中
  4. 最后将遍历的每个LED,调用create_gpio_led进行设备的创建

3、create_gpio_led分析

3.1 相关数据结构

3.1.1 led_classdev

该数据结构属于核心层,在硬件驱动层需要与其进行关联,遂在此介绍。

代码语言:javascript
复制
struct led_classdev {
    const char  *name;
    enum led_brightness  brightness;
    enum led_brightness  max_brightness;
    int    flags;

    /* Lower 16 bits reflect status */
#define LED_SUSPENDED  BIT(0)
#define LED_UNREGISTERING BIT(1)
    /* Upper 16 bits reflect control information */
#define LED_CORE_SUSPENDRESUME BIT(16)
#define LED_SYSFS_DISABLE BIT(17)
#define LED_DEV_CAP_FLASH BIT(18)
#define LED_HW_PLUGGABLE BIT(19)
#define LED_PANIC_INDICATOR BIT(20)
#define LED_BRIGHT_HW_CHANGED BIT(21)
#define LED_RETAIN_AT_SHUTDOWN BIT(22)

    /* set_brightness_work / blink_timer flags, atomic, private. */
    unsigned long  work_flags;

#define LED_BLINK_SW   0
#define LED_BLINK_ONESHOT  1
#define LED_BLINK_ONESHOT_STOP  2
#define LED_BLINK_INVERT  3
#define LED_BLINK_BRIGHTNESS_CHANGE  4
#define LED_BLINK_DISABLE  5

    /* Set LED brightness level
     * Must not sleep. Use brightness_set_blocking for drivers
     * that can sleep while setting brightness.
     */
    void  (*brightness_set)(struct led_classdev *led_cdev,
                      enum led_brightness brightness);
    /*
     * Set LED brightness level immediately - it can block the caller for
     * the time required for accessing a LED device register.
     */
    int (*brightness_set_blocking)(struct led_classdev *led_cdev,
                       enum led_brightness brightness);
    /* Get LED brightness level */
    enum led_brightness (*brightness_get)(struct led_classdev *led_cdev);

    /*
     * Activate hardware accelerated blink, delays are in milliseconds
     * and if both are zero then a sensible default should be chosen.
     * The call should adjust the timings in that case and if it can't
     * match the values specified exactly.
     * Deactivate blinking again when the brightness is set to LED_OFF
     * via the brightness_set() callback.
     */
    int  (*blink_set)(struct led_classdev *led_cdev,
                     unsigned long *delay_on,
                     unsigned long *delay_off);

    struct device  *dev;
    const struct attribute_group **groups;

    struct list_head  node;   /* LED Device list */
    const char  *default_trigger; /* Trigger to use */

    unsigned long   blink_delay_on, blink_delay_off;
    struct timer_list  blink_timer;
    int    blink_brightness;
    int    new_blink_brightness;
    void   (*flash_resume)(struct led_classdev *led_cdev);

    struct work_struct set_brightness_work;
    int   delayed_set_value;

#ifdef CONFIG_LEDS_TRIGGERS
    /* Protects the trigger data below */
    struct rw_semaphore  trigger_lock;

    struct led_trigger *trigger;
    struct list_head  trig_list;
    void   *trigger_data;
    /* true if activated - deactivate routine uses it to do cleanup */
    bool   activated;
#endif

#ifdef CONFIG_LEDS_BRIGHTNESS_HW_CHANGED
    int    brightness_hw_changed;
    struct kernfs_node *brightness_hw_changed_kn;
#endif

    /* Ensures consistent access to the LED Flash Class device */
    struct mutex  led_access;
};

结构体名称led_classdev

文件位置include/linux/leds.h

主要作用:该结构体所包括的内容较多,主要有以下几个功能

  • brightness当前亮度值,max_brightness最大亮度
  • LED闪烁功能控制:blink_timerblink_brightnessnew_blink_brightness
  • attribute_group:创建sysfs文件节点,向上提供用户访问接口

由上面可知,在创建gpio_led_data时,顺便初始化 led_classdev结构体,赋值相关属性以及部分回调函数,最终将led_classdev注册进入LED子系统框架中,在sysfs中创建对应的文件节点。

3.2 实现流程

代码语言:javascript
复制
static int create_gpio_led(const struct gpio_led *template,
    struct gpio_led_data *led_dat, struct device *parent,
    struct device_node *np, gpio_blink_set_t blink_set)
{
    int ret, state;

    led_dat->gpiod = template->gpiod;
    if (!led_dat->gpiod) {
        /*
         * This is the legacy code path for platform code that
         * still uses GPIO numbers. Ultimately we would like to get
         * rid of this block completely.
         */
        unsigned long flags = GPIOF_OUT_INIT_LOW;

        /* skip leds that aren't available */
        if (!gpio_is_valid(template->gpio)) {        // 判断是否gpio合法
            dev_info(parent, "Skipping unavailable LED gpio %d (%s)\n",
                    template->gpio, template->name);
            return 0;
        }

        if (template->active_low)
            flags |= GPIOF_ACTIVE_LOW;

        ret = devm_gpio_request_one(parent, template->gpio, flags,
                        template->name);
        if (ret < 0)
            return ret;

        led_dat->gpiod = gpio_to_desc(template->gpio);      // 获取gpio组
        if (!led_dat->gpiod)
            return -EINVAL;
    }

    led_dat->cdev.name = template->name;         // 赋值一些属性信息
    led_dat->cdev.default_trigger = template->default_trigger;
    led_dat->can_sleep = gpiod_cansleep(led_dat->gpiod);
    if (!led_dat->can_sleep)
        led_dat->cdev.brightness_set = gpio_led_set;      // 设置LED
    else
        led_dat->cdev.brightness_set_blocking = gpio_led_set_blocking;
    led_dat->blinking = 0;
    if (blink_set) {
        led_dat->platform_gpio_blink_set = blink_set;
        led_dat->cdev.blink_set = gpio_blink_set;
    }
    if (template->default_state == LEDS_GPIO_DEFSTATE_KEEP) {
        state = gpiod_get_value_cansleep(led_dat->gpiod);
        if (state < 0)
            return state;
    } else {
        state = (template->default_state == LEDS_GPIO_DEFSTATE_ON);
    }
    led_dat->cdev.brightness = state ? LED_FULL : LED_OFF;
    if (!template->retain_state_suspended)
        led_dat->cdev.flags |= LED_CORE_SUSPENDRESUME;
    if (template->panic_indicator)
        led_dat->cdev.flags |= LED_PANIC_INDICATOR;
    if (template->retain_state_shutdown)
        led_dat->cdev.flags |= LED_RETAIN_AT_SHUTDOWN;

    ret = gpiod_direction_output(led_dat->gpiod, state);
    if (ret < 0)
        return ret;

    return devm_of_led_classdev_register(parent, np, &led_dat->cdev);  // 将LED设备注册到子系统中
}

函数介绍create_gpio_led创建LED设备的核心函数

实现思路

  1. 先通过gpio_is_valid接口,判断GPIO是否合法
  2. 将上层从设备树解析出来的信息,填充到gpio_led_data字段中,并且初始化部分字段,如:led_classdevgpio_desc
  3. 填充回调函数,实现相应的动作,如:gpio_led_setgpio_led_set_blockinggpio_blink_set
  4. 最后调用devm_of_led_classdev_register接口,将LED设备注册到LED框架之中。

4、回调函数分析

硬件驱动层,肯定包括最终操作硬件的部分,也就是上面提到的一些回调函数,属于我们驱动工程师开发的内容。

4.1 gpio_blink_set

代码语言:javascript
复制
static int gpio_blink_set(struct led_classdev *led_cdev,
    unsigned long *delay_on, unsigned long *delay_off)
{
    struct gpio_led_data *led_dat = cdev_to_gpio_led_data(led_cdev);

    led_dat->blinking = 1;
    return led_dat->platform_gpio_blink_set(led_dat->gpiod, GPIO_LED_BLINK,
                        delay_on, delay_off);
}

函数介绍gpio_blink_set主要用于设置闪烁的时延

4.2 gpio_led_set 和gpio_led_set_blocking

代码语言:javascript
复制
static inline struct gpio_led_data *
            cdev_to_gpio_led_data(struct led_classdev *led_cdev)
{
    return container_of(led_cdev, struct gpio_led_data, cdev);
}

static void gpio_led_set(struct led_classdev *led_cdev,
    enum led_brightness value)
{
    struct gpio_led_data *led_dat = cdev_to_gpio_led_data(led_cdev);
    int level;

    if (value == LED_OFF)
        level = 0;
    else
        level = 1;

    if (led_dat->blinking) {
        led_dat->platform_gpio_blink_set(led_dat->gpiod, level,
                         NULL, NULL);
        led_dat->blinking = 0;
    } else {
        if (led_dat->can_sleep)
            gpiod_set_value_cansleep(led_dat->gpiod, level);
        else
            gpiod_set_value(led_dat->gpiod, level);
    }
}

static int gpio_led_set_blocking(struct led_classdev *led_cdev,
    enum led_brightness value)
{
    gpio_led_set(led_cdev, value);
    return 0;
}

函数介绍gpio_led_setgpio_led_set_blocking主要用于设置亮度,区别在于gpio_led_set 是不可睡眠的,gpio_led_set_blocking是可休眠的。

5、总结

上面我们了解了硬件驱动层的实现流程以及相关数据结构,总结来看:

5.1 数据结构之间的关系如下

LED子系统-LED数据结构.drawio

5.2 函数实现流程如下

代码语言:javascript
复制
gpio_led_probe(drivers/leds/leds-gpio.c)
    |--> gpio_leds_create
        |--> create_gpio_led            //  创建LED设备
            |--> devm_of_led_classdev_register      

5.3 主要作用如下

  1. 从设备树获取LED相关属性信息,赋值给gpio_led结构体
  2. gpio_ledgpio_leds_privled_classdev等数据结构关联起来
  3. LED设备注册进入LED子系统中
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-05-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 嵌入式艺术 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 二、LED子系统——硬件驱动层
    • 1、gpio_led_probe分析
      • 1.1 相关数据结构
      • 1.2 实现流程
    • 2、gpio_leds_create分析
      • 2.1 相关数据结构
      • 2.2 实现流程
    • 3、create_gpio_led分析
      • 3.1 相关数据结构
      • 3.2 实现流程
    • 4、回调函数分析
      • 4.1 gpio_blink_set
      • 4.2 gpio_led_set 和gpio_led_set_blocking
    • 5、总结
      • 5.1 数据结构之间的关系如下
      • 5.2 函数实现流程如下
      • 5.3 主要作用如下
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档