前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >在自定义数据集上微调Alpaca和LLaMA

在自定义数据集上微调Alpaca和LLaMA

作者头像
deephub
发布2023-08-30 09:11:11
1.3K0
发布2023-08-30 09:11:11
举报
文章被收录于专栏:DeepHub IMBA

本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA,我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程,本文将涵盖数据处理、模型训练和使用流行的自然语言处理库(如Transformers和hugs Face)进行评估。此外还将介绍如何使用grado应用程序部署和测试模型。

配置

首先,alpaca-lora1 GitHub存储库提供了一个脚本(finetune.py)来训练模型。在本文中,我们将利用这些代码并使其在Google Colab环境中无缝地工作。

首先安装必要的依赖:

代码语言:javascript
复制
 !pip install -U pip
 !pip install accelerate==0.18.0
 !pip install appdirs==1.4.4
 !pip install bitsandbytes==0.37.2
 !pip install datasets==2.10.1
 !pip install fire==0.5.0
 !pip install git+https://github.com/huggingface/peft.git
 !pip install git+https://github.com/huggingface/transformers.git
 !pip install torch==2.0.0
 !pip install sentencepiece==0.1.97
 !pip install tensorboardX==2.6
 !pip install gradio==3.23.0

安装完依赖项后,继续导入所有必要的库,并为matplotlib绘图配置设置:

代码语言:javascript
复制
 import transformers
 import textwrap
 from transformers import LlamaTokenizer, LlamaForCausalLM
 import os
 import sys
 from typing import List
  
 from peft import (
     LoraConfig,
     get_peft_model,
     get_peft_model_state_dict,
     prepare_model_for_int8_training,
 )
  
 import fire
 import torch
 from datasets import load_dataset
 import pandas as pd
  
 import matplotlib.pyplot as plt
 import matplotlib as mpl
 import seaborn as sns
 from pylab import rcParams
  
 %matplotlib inline
 sns.set(rc={'figure.figsize':(10, 7)})
 sns.set(rc={'figure.dpi':100})
 sns.set(style='white', palette='muted', font_scale=1.2)
  
 DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
 DEVICE

数据

我们这里使用BTC Tweets Sentiment dataset4,该数据可在Kaggle上获得,包含大约50,000条与比特币相关的tweet。为了清理数据,删除了所有以“转发”开头或包含链接的推文。

使用Pandas来加载CSV:

代码语言:javascript
复制
 df = pd.read_csv("bitcoin-sentiment-tweets.csv")
 df.head()

通过清理的数据集有大约1900条推文。

情绪标签用数字表示,其中-1表示消极情绪,0表示中性情绪,1表示积极情绪。让我们看看它们的分布:

代码语言:javascript
复制
 df.sentiment.value_counts()
 
 
 # 0.0    860
 # 1.0    779
 # -1.0    258
 # Name: sentiment, dtype: int64

数据量差不多,虽然负面评论较少,但是可以简单的当成平衡数据来对待:

代码语言:javascript
复制
 df.sentiment.value_counts().plot(kind='bar');

构建JSON数据集

原始Alpaca存储库中的dataset5格式由一个JSON文件组成,该文件具有具有指令、输入和输出字符串的对象列表。

让我们将Pandas的DF转换为一个JSON文件,该文件遵循原始Alpaca存储库中的格式:

代码语言:javascript
复制
 def sentiment_score_to_name(score: float):
     if score > 0:
         return "Positive"
     elif score < 0:
         return "Negative"
     return "Neutral"
  
 dataset_data = [
     {
         "instruction": "Detect the sentiment of the tweet.",
         "input": row_dict["tweet"],
         "output": sentiment_score_to_name(row_dict["sentiment"])
     }
     for row_dict in df.to_dict(orient="records")
 ]
  
 dataset_data[0]

结果如下:

代码语言:javascript
复制
 {
   "instruction": "Detect the sentiment of the tweet.",
   "input": "@p0nd3ea Bitcoin wasn't built to live on exchanges.",
   "output": "Positive"
 }

然后就是保存生成的JSON文件,以便稍后使用它来训练模型:

代码语言:javascript
复制
 import json
 with open("alpaca-bitcoin-sentiment-dataset.json", "w") as f:
    json.dump(dataset_data, f)

模型权重

虽然原始的Llama模型权重不可用,但它们被泄露并随后被改编用于HuggingFace Transformers库。我们将使用decapoda-research6:

代码语言:javascript
复制
 BASE_MODEL = "decapoda-research/llama-7b-hf"
  
 model = LlamaForCausalLM.from_pretrained(
     BASE_MODEL,
     load_in_8bit=True,
     torch_dtype=torch.float16,
     device_map="auto",
 )
  
 tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
  
 tokenizer.pad_token_id = (
     0  # unk. we want this to be different from the eos token
 )
 tokenizer.padding_side = "left"

这段代码使用来自Transformers库的LlamaForCausalLM类加载预训练的Llama 模型。load_in_8bit=True参数使用8位量化加载模型,以减少内存使用并提高推理速度。

代码还使用LlamaTokenizer类为同一个Llama模型加载标记器,并为填充标记设置一些附加属性。具体来说,它将pad_token_id设置为0以表示未知的令牌,并将padding_side设置为“left”以填充左侧的序列。

数据集加载

现在我们已经加载了模型和标记器,下一步就是加载之前保存的JSON文件,使用HuggingFace数据集库中的load_dataset()函数:

代码语言:javascript
复制
 data = load_dataset("json", data_files="alpaca-bitcoin-sentiment-dataset.json")
 data["train"]

结果如下:

代码语言:javascript
复制
 Dataset({
     features: ['instruction', 'input', 'output'],
     num_rows: 1897
 })

接下来,我们需要从加载的数据集中创建提示并标记它们:

代码语言:javascript
复制
 def generate_prompt(data_point):
     return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.  # noqa: E501
 ### Instruction:
 {data_point["instruction"]}
 ### Input:
 {data_point["input"]}
 ### Response:
 {data_point["output"]}"""
  
  
 def tokenize(prompt, add_eos_token=True):
     result = tokenizer(
         prompt,
         truncation=True,
         max_length=CUTOFF_LEN,
         padding=False,
         return_tensors=None,
     )
     if (
         result["input_ids"][-1] != tokenizer.eos_token_id
         and len(result["input_ids"]) < CUTOFF_LEN
         and add_eos_token
     ):
         result["input_ids"].append(tokenizer.eos_token_id)
         result["attention_mask"].append(1)
  
     result["labels"] = result["input_ids"].copy()
  
     return result
  
 def generate_and_tokenize_prompt(data_point):
     full_prompt = generate_prompt(data_point)
     tokenized_full_prompt = tokenize(full_prompt)
     return tokenized_full_prompt

第一个函数generate_prompt从数据集中获取一个数据点,并通过组合指令、输入和输出值来生成提示。第二个函数tokenize接收生成的提示,并使用前面定义的标记器对其进行标记。它还向输入序列添加序列结束标记,并将标签设置为与输入序列相同。第三个函数generate_and_tokenize_prompt结合了前两个函数,生成并标记提示。

数据准备的最后一步是将数据集分成单独的训练集和验证集:

代码语言:javascript
复制
 train_val = data["train"].train_test_split(
     test_size=200, shuffle=True, seed=42
 )
 train_data = (
     train_val["train"].map(generate_and_tokenize_prompt)
 )
 val_data = (
     train_val["test"].map(generate_and_tokenize_prompt)
 )

我们还需要数据进行打乱,并且获取200个样本作为验证集。generate_and_tokenize_prompt()函数应用于训练和验证集中的每个示例,生成标记化的提示。

训练

训练过程需要几个参数,这些参数主要来自原始存储库中的微调脚本:

代码语言:javascript
复制
 LORA_R = 8
 LORA_ALPHA = 16
 LORA_DROPOUT= 0.05
 LORA_TARGET_MODULES = [
     "q_proj",
     "v_proj",
 ]
  
 BATCH_SIZE = 128
 MICRO_BATCH_SIZE = 4
 GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
 LEARNING_RATE = 3e-4
 TRAIN_STEPS = 300
 OUTPUT_DIR = "experiments"

下面就可以为训练准备模型了:

代码语言:javascript
复制
 model = prepare_model_for_int8_training(model)
 config = LoraConfig(
     r=LORA_R,
     lora_alpha=LORA_ALPHA,
     target_modules=LORA_TARGET_MODULES,
     lora_dropout=LORA_DROPOUT,
     bias="none",
     task_type="CAUSAL_LM",
 )
 model = get_peft_model(model, config)
 model.print_trainable_parameters()
 
 #trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199

我们使用LORA算法初始化并准备模型进行训练,通过量化可以减少模型大小和内存使用,而不会显着降低准确性。

LoraConfig7是一个为LORA算法指定超参数的类,例如正则化强度(lora_alpha)、dropout概率(lora_dropout)和要压缩的目标模块(target_modules)。

然后就可以直接使用Transformers库进行训练:

代码语言:javascript
复制
 training_arguments = transformers.TrainingArguments(
     per_device_train_batch_size=MICRO_BATCH_SIZE,
     gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
     warmup_steps=100,
     max_steps=TRAIN_STEPS,
     learning_rate=LEARNING_RATE,
     fp16=True,
     logging_steps=10,
     optim="adamw_torch",
     evaluation_strategy="steps",
     save_strategy="steps",
     eval_steps=50,
     save_steps=50,
     output_dir=OUTPUT_DIR,
     save_total_limit=3,
     load_best_model_at_end=True,
     report_to="tensorboard"
 )

这段代码创建了一个TrainingArguments对象,该对象指定用于训练模型的各种设置和超参数。这些包括:

  • gradient_accumulation_steps:在执行向后/更新之前累积梯度的更新步数。
  • warmup_steps:优化器的预热步数。
  • max_steps:要执行的训练总数。
  • learning_rate:学习率。
  • fp16:使用16位精度进行训练。

DataCollatorForSeq2Seq是transformer库中的一个类,它为序列到序列(seq2seq)模型创建一批输入/输出序列。在这段代码中,DataCollatorForSeq2Seq对象用以下参数实例化:

代码语言:javascript
复制
 data_collator = transformers.DataCollatorForSeq2Seq(
     tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
 )

pad_to_multiple_of:表示最大序列长度的整数,四舍五入到最接近该值的倍数。

padding:一个布尔值,指示是否将序列填充到指定的最大长度。

以上就是训练的所有代码准备,下面就是训练了

代码语言:javascript
复制
 trainer = transformers.Trainer(
     model=model,
     train_dataset=train_data,
     eval_dataset=val_data,
     args=training_arguments,
     data_collator=data_collator
 )
 model.config.use_cache = False
 old_state_dict = model.state_dict
 model.state_dict = (
     lambda self, *_, **__: get_peft_model_state_dict(
         self, old_state_dict()
     )
 ).__get__(model, type(model))
  
 model = torch.compile(model)
  
 trainer.train()
 model.save_pretrained(OUTPUT_DIR)

在实例化训练器之后,代码在模型的配置中将use_cache设置为False,并使用get_peft_model_state_dict()函数为模型创建一个state_dict,该函数为使用低精度算法进行训练的模型做准备。

然后在模型上调用torch.compile()函数,该函数编译模型的计算图并准备使用PyTorch 2进行训练。

训练过程在A100上持续了大约2个小时。我们看一下Tensorboard上的结果:

训练损失和评估损失呈稳步下降趋势。看来我们的微调是有效的。

如果你想将模型上传到Hugging Face上,可以使用下面代码,

代码语言:javascript
复制
 from huggingface_hub import notebook_login
  
 notebook_login()
 model.push_to_hub("curiousily/alpaca-bitcoin-tweets-sentiment", use_auth_token=True)

推理

我们可以使用generate.py脚本来测试模型:

代码语言:javascript
复制
 !git clone https://github.com/tloen/alpaca-lora.git
 %cd alpaca-lora
 !git checkout a48d947

我们的脚本启动的gradio应用程序

代码语言:javascript
复制
 !python generate.py \
     --load_8bit \
     --base_model 'decapoda-research/llama-7b-hf' \
     --lora_weights 'curiousily/alpaca-bitcoin-tweets-sentiment' \
     --share_gradio

简单的界面如下:

总结

我们已经成功地使用LoRa方法对Llama 模型进行了微调,还演示了如何在Gradio应用程序中使用它。

如果你对本文感兴趣,请看原文:

https://colab.research.google.com/drive/1X85FLniXx_NyDsh_F_aphoIAy63DKQ7d?usp=sharing

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-07-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 DeepHub IMBA 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 配置
  • 数据
  • 构建JSON数据集
  • 模型权重
  • 数据集加载
  • 训练
  • 推理
  • 总结
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档