前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >如何发布具有超高性能的地图服务

如何发布具有超高性能的地图服务

作者头像
Python大数据分析
发布2023-09-04 12:53:49
4510
发布2023-09-04 12:53:49
举报
文章被收录于专栏:Python大数据分析

❝本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes ❞

1 简介

大家好我是费老师,在日常研发地图类应用的场景中,为了在地图上快速加载大量的矢量要素,且方便快捷的在前端处理矢量的样式,且矢量数据可以携带对应的若干属性字段,目前主流的做法是使用矢量切片(vector tiles)的方式将矢量数据发布为服务进行调用:

而可用于发布矢量切片服务的工具,主流的有geoservertippecanoe等,但是使用起来方式比较繁琐,且很容易遇到性能瓶颈。

除此之外,PostGIS中也提供了ST_AsMVT等函数可以直接通过书写SQL来生成矢量切片数据,但是需要额外进行服务化的开发封装,较为繁琐。

而我在最近的工作中,接触到由maplibre开源的高性能矢量切片服务器martin( https://github.com/maplibre/martin ),它基于Rust进行开发,官方宣传其性能快到疯狂(Blazing fast),而在我实际的使用体验中也确实如此,在今天的文章中我就将为大家分享有关martin发布矢量切片地图服务的常用知识😉。

2 基于martin+PostGIS发布矢量切片服务

martin可在windowslinuxmac等主流系统上运行,其最经典的用法是配合PostGIS,下面我们以linux系统为例,介绍martin的部署使用方法:

2.1 martin的安装

martin提供了多种多样的安装方式,其中我体验下来比较简单稳定的安装方式是基于cargo,这是Rust的包管理器(因为martin基于Rust开发,这也是其超高性能的原因之一),martin可以直接当作Rust包进行安装。因此我们首先需要安装cargo

代码语言:javascript
复制
apt-get update
apt-get install cargo

cargo完成安装后,为了加速其国内下载速度,我们可以使用由字节跳动维护的镜像源( https://rsproxy.cn/ ):

代码语言:javascript
复制
mkdir ~/.cargo
vim ~/.cargo/config

# 在vim中粘贴下列内容后保存退出
[source.crates-io]
replace-with = 'rsproxy'
[source.rsproxy]
registry = "https://rsproxy.cn/crates.io-index"
[source.rsproxy-sparse]
registry = "sparse+https://rsproxy.cn/index/"
[registries.rsproxy]
index = "https://rsproxy.cn/crates.io-index"
[net]
git-fetch-with-cli = true

接着逐一执行下列命令即可完成martin及其必要依赖的安装:

代码语言:javascript
复制
# 安装必要依赖以防martin安装失败
apt-get install pkg-config
apt-get install libssl-dev
cargo install martin

2.2 准备演示用数据

接下来我们利用geopandas来读入及生成一些示例用PostGIS数据库表,完整的代码及示例数据可以在文章开头的仓库中找到:

代码语言:javascript
复制
import random
import geopandas as gpd
from shapely import Point
from sqlalchemy import create_engine

engine = create_engine('postgresql://postgres:mypassword@127.0.0.1:5432/gis_demo')

# 读取测试矢量数据1(数据来自阿里DataV地图选择器)
demo_gdf1 = gpd.read_file('中华人民共和国.json')[['adcode', 'name', 'geometry']]

# 生成示例矢量数据2
demo_gdf2 = gpd.GeoDataFrame(
    {
        'id': range(100000),
        'geometry': [Point(random.normalvariate(0, 20), 
                           random.normalvariate(0, 20)) 
                     for i in range(100000)]
    },
    crs='EPSG:4326'
)

# 推送至数据库
demo_gdf1.to_postgis(name='demo_gdf1', con=engine, if_exists='replace')
demo_gdf2.to_postgis(name='demo_gdf2', con=engine, if_exists='replace')

通过上面的Python代码,我们将两张带有矢量数据且坐标参考系为WGS84的数据表demo_gdf1demo_gdf2分别推送至演示用PostGIS数据库中:

接下来我们就可以愉快的使用martin来发布矢量切片服务了~

2.3 使用martin发布矢量切片地图服务

martin的基础使用超级简单,只需要在启动martin服务时设置好目标PostGIS数据库的连接参数字符串,它就可以自动发现数据库中具有合法坐标系(默认为EPSG:4326)的所有矢量表,并自动发布为相应的地图服务,以我们的示例数据库为例,参考下列命令:

代码语言:javascript
复制
/root/.cargo/bin/martin postgresql://postgres:mypassword@127.0.0.1:5432/gis_demo

从输出结果中可以看到示例数据库中的demo_gdf1demo_gdf2表均被martin自动发现,我们的martin服务被正常启动:

这时直接访问本机IP地址对应的3000端口,即可看到相应的提示信息:

访问上面对应地址下的/catalog页面,可以看到被当前martin服务所架起的图层信息:

当以各个图层id作为路径进行访问时,就可以看到其对应地图服务的完整参数信息了,以demo_gdf1为例:

mapboxmaplibre等地图框架了解的朋友,就知道上述信息可以直接用于向地图实例中添加相应的sourcelayer,下面是一个简单的基于maplibre的地图示例,要素加载速度非常之快,可以说唯一限制要素加载速度上限的瓶颈是带宽😎:

视频:http://mpvideo.qpic.cn/0bc3naaagaaazuafpof65zsfa2gdanuaaaya.f10002.mp4?

除此之外,martin还有相当多的额外功能,譬如基于PostGIS自定义运算函数、基于nginx实现切片缓存等,更多martin使用相关内容请移步官网https://maplibre.org/martin/

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-07-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python大数据分析 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 简介
  • 2 基于martin+PostGIS发布矢量切片服务
    • 2.1 martin的安装
      • 2.2 准备演示用数据
        • 2.3 使用martin发布矢量切片地图服务
        相关产品与服务
        数据库
        云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档